Что представляет собой кристалл. Что такое кристалл? Выращивание кристаллов из медного купороса

07.09.2023

Введение

Кристалл. Что можно себе представить, услышав это слово? В народе говорят, что кристалл растёт. Почему же он может расти? Ведь это не растение. Чтобы это узнать я провела исследование.

Мне стало интересно, чем кристалл служит человеку, как его добывают, можно ли выращивать кристалл и как это сделать. Кристаллы люди используют в строительстве, при производстве ювелирных изделий, часов, электронных приборов, компьютерной техники.
Но, где взять столько кристаллов? Думаю, что в природе найти нужный кристалл сложно, поэтому его можно вырастить искусственно. Я решила попробовать вырастить кристалл у себя дома.

Для исследования я составила такой план работы. 1. Что такое кристалл? 2. История кристалла. 3. Выращивание кристалла в домашних условиях. 4. Чем кристалл служит человеку? 5. Мой эксперимент.

Что такое кристалл?

Кристалл — это обычно твердое вещество, но бывают и жидкие кристаллы. Каждое вещество состоит из маленьких частиц (молекул или атомов). Можно назвать их кирпичиками. Обычно в веществе кирпичики разные и по-разному соединяются друг с другом, т. е. получаются странные узоры. А в кристалле кирпичики одинаковые, они одинаково соединяются друг с другом, повторяются в точно такой же последовательности по всему веществу, т. е. получаются узоры правильной формы. Благодаря такой повторяющейся структуре кристаллы сами могут принимать странные и интересные формы. Фотографии кристаллов, которые мне очень понравились, я поместила в приложение А.

История кристалла

Кристаллы многих минералов и драгоценных камней были известны и описаны ещё несколько тысячелетий назад. Сначала слово «кристалл» означало в переводе с греческого только «лёд». Потом так стали называть прозрачные кристаллы кварца, который ещё называется горный хрусталь. Люди думали, что горный хрусталь — это лёд, который не тает в тепле. Удивительной особенностью горного хрусталя являются его гладкие плоские грани. Возникла догадка, что форма может быть связана с внутренним строением. А потом учёные доказали, что строение кристалла имеет повторяющийся рисунок. Более подробную информацию об истории кристаллов я поместила в приложение Б.

Выращивание кристалла в домашних условиях

Выращивание кристаллов — процесс очень интересный, но бывает достаточно длительным. Когда выращивают кристалл, разбирают все строительные блоки (молекулы) на отдельные элементы в воде и дают им возможность естественно занять соответствующую позицию в повторяющейся структуре, когда вода испарится.

Кристаллы можно выращивать разными способами. Я попробовала вырастить кристалл из химического вещества. Я взяла набор для творчества «Лиловый кристалл на разноцветных камнях» и по указаниям инструкции, предусмотренной в наборе, вырастила кристалл. Я описала свои действия и наблюдения в разделе «Мой эксперимент». Несмотря на разнообразие способов выращивания, можно увидеть у всех них общие черты. Этапы процесса выращивания и другие известные способы выращивания я поместила в приложение В.

Чем кристалл служит человеку?

Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет. Поэтому ограничимся несколькими примерами.

Твердые и жидкие кристаллы используют в технике: при производстве телевизоров, компьютеров, микроволновых печей и других электронных приборов благодаря их электрическим и оптическим свойствам.

Алмаз, рубин, сапфир, гранат и кварц — это не только красивые драгоценные и полудрагоценные камни, которые используются для ювелирных украшений. Алмаз применяют при производстве инструментов для распиливания сверхпрочных материалов. Лазер делается с использованием рубина и граната. Вся часовая промышленность работает на искусственных рубинах. Из прозрачного кварца делают линзы, призмы и др. детали оптических приборов.

Другие примеры полезного применения кристаллов я поместила в приложение Г.

Мой эксперимент

Я провела эксперимент по выращиванию кристалла в домашних условиях. Для эксперимента я взяла набор для творчества «Лиловый кристалл на разноцветных камнях», который мне подарила бабушка.

Сначала я взяла контейнер для кристаллов и высыпала туда камешки. Потом я приготовила насыщенный раствор. Насыщенный раствор — это такой раствор, в котором растворяемого химического вещества находится так много, что оно больше не растворяется. Я налила горячей кипяченой воды в ёмкость для размешивания, насыпала туда крупинки химического вещества, затем перемешала раствор и аккуратно вылила его в контейнер для кристалла. Потом я наполнила емкость для размешивания горячей кипяченой водой ещё раз, на этот раз наполовину. Я перемешивала раствор около пяти минут, добавляя в него химическое вещество. После пяти минут перемешивания я аккуратно слила раствор в контейнер для кристаллов.

Далее я посеяла «семена» кристалла. «Семена» кристалла — это такие же крупинки химического вещества, из которых я готовила раствор. Несколько крупинок я высыпала в раствор. Они осели на камешках внутри контейнера для кристалла.

Я поставила контейнер на полку в книжный шкаф, чтобы он не подвергался перепадам температур, чтобы его не тревожила громкая музыка, чтобы рядом не было оживлённого перемещения людей и животных. Фотографии, сделанные в первый день эксперимента, я поместила в приложение Д. Я наблюдала за ростом кристалла каждый день и фотографировала кристалл. Он рос медленно и едва заметно. Кусочки кристалла выросли именно там, куда упали «семена». Фотографии, полученные в ходе эксперимента я поместила в приложение Е.

Когда я заметила, что кусочек кристалла вылез из воды, я поняла, что кристалл вырос. Это произошло через четырнадцать дней. Тогда я вылила раствор и промыла кристалл холодной водой из под крана.. Он получился прозрачно-лилового цвета, похожий на травку из хрусталя.

Заключение

Кристаллы имеют чёткую, повторяющуюся структуру, бывают твердыми и жидкими. Они встречаются в природе и могут быть выращены человеком. Красивые кристаллы образуются тогда, когда кристаллизация атомов и молекул вещества в узоры правильной формы происходит очень медленно. Кристалл растёт потому, что вода из насыщенного раствора постепенно испаряется, а кристаллическое вещество переходит из жидкого состояния в твёрдое, так как «кирпичики» (атомы и молекулы) притягиваются друг к другу и самостоятельно занимают место в повторяющейся структуре.

Кристаллы очень полезны для человека. В некоторых случаях без них не обойтись. Например, если нужно разрезать камень, не обойтись без алмаза, а если нужно сделать часы, то не обойтись без рубина. Микропроцессоры в компьютерах сделаны из кремния, а без жидко-кристаллических дисплеев мы не можем уже себе представить никакой электронный прибор. Действительно, найти нужный кристалл в природе очень сложно. Гораздо проще и дешевле его вырастить искусственно. Это делается в промышленном производстве. Но можно вырастить кристалл и в домашних условиях.

У меня получилось вырастить кристалл за четырнадцать дней с помощью набора для творчества. Мой эксперимент показал, что кристалл можно выращивать в домашних условиях. Мне понравилось выращивать кристалл — это очень увлекательное занятие. Я узнала много способов выращивания кристаллов. В будущем я бы хотела вырастить красивые кристаллы разных цветов другими способами.

Список использованных источников

Приложение А.
Разнообразие кристаллов

Сера самородная

Вульфенит

Тетраэдрит

Аквамарин

Медный купорос

Поваренная соль

Данбурит

Кристаллик сахара

Турмалин

Скаполит

Кристаллы меди

Кварц

Приложение Б.
Подробнее об истории кристаллов

Кристаллами называют все природные правильные формы минералов и других твердых веществ. Минералы делят на две группы: самородки, встречающиеся в природе чистом виде, например золото, углерод (в виде графита и алмаза) и соединения — комбинацию двух и более элементов, например пирит — соединение серы с железом. Минералы в породе представлены и мелкими зернами, и крупными кристаллами. Минералы образуют красивые кристаллы, если растут медленно.

Кристалл — это твердое вещество, молекулы (или атомы, ионы) которого организованы в четкой повторяющейся схеме. В некоторых твердых веществах организация строительных блоков (т.е. атомов и молекул) может быть случайной или очень отличающейся по всему веществу. В кристаллах же, набор атомов, называемых «элементарная ячейка», повторяется точно в такой же последовательности целиком по всему материалу. Благодаря такой повторяющейся структуре кристаллы сами могут принимать странные и интересные формы.

Ещё кристаллы бывают жидкими. Жидкие кристаллы — это вещества, которые ведут себя одновременно как жидкости и как твёрдые тела. Молекулы в жидких кристаллах, с одной стороны, довольно подвижны, с другой расположены регулярно, образуя подобие кристаллической структуры (одномерной или двумерной). Часто уже при небольшом нагревании правильное расположение молекул нарушается, и жидкий кристалл становится обычной жидкостью. Напротив, при достаточно низких температурах они замерзают, превращаясь в твёрдые тела.

Сначала «кристалл» означало в переводе с греческого только «лёд». Потом философ Теофраст, в третьем веке до нашей, эры назвал так прозрачные кристаллы кварца (горного хрусталя), обнаруженные в Альпах. Горный хрусталь принимали за лед, затвердевший от холода до такой степени, что он уже не плавится.

Кристаллы многих минералов и драгоценных камней были известны и описаны ещё несколько тысячелетий назад. Кристаллы кварца из императорской короны, сохранившиеся с 768 года нашей эры, находятся в Сёсоине, сокровищнице японских императоров в Нара. Одна из наиболее ранних зарисовок кристаллов содержится в китайской фармакопее одиннадцатого века нашей эры. В конце эпохи средневековья, в пятнадцатом веке, слово «кристалл» стало употребляться в более общем смысле.

Удивительной особенностью горного хрусталя и многих других прозрачных минералов являются их гладкие плоские грани. В конце семнадцатого века было подмечено, что имеется определенная симметрия в их расположении. Было установлено также, что некоторые непрозрачные минералы также имеют естественную правильную огранку и что форма огранки характерна для того или иного минерала. Возникла догадка, что форма может быть связана с внутренним строением, что кристаллы образуются посредством регулярного повторения в пространстве одного и того же структурного элемента. В конце концов кристаллами стали называть все твердые вещества, имеющие природную плоскую огранку.

В восемнадцатом веке французский аббат Р. Гаюи выдвинул предположение, что кристаллы возникают в результате правильной укладки крохотных одинаковых частиц, которые он назвал «молекулярными блоками». Гаюи показал, каким образом можно получить гладкие плоские грани кальцита, укладывая такие «кирпичики». Различия в форме разных веществ он объяснил разницей как в форме «кирпичиков», так и в способе их укладки. С восемнадцатого века кристаллом называют все природные правильные формы минералов и других твердых веществ.

При росте кристалла в идеальных условиях форма его в течение роста остается неизменной, как если бы к растущему кристаллу непрерывно присоединялись бы элементарные кирпичики. Сейчас известно, что такими элементарными кирпичиками являются атомы или группы атомов. Кристаллы состоят из атомных рядов, периодически повторяющихся в пространстве и образующих кристаллическую решетку.

Считается, что состояние жидкого кристалла открыл в 1888 австрийский ботаник Ф. Рейнитцер. Он обратил внимание, что у кристаллов, которые он изучал, было два разных жидких состояния — мутное и прозрачное. Он отметил также, что при нагревании изменяется цвет жидкого кристалла - от красного к синему, с повторением в обратном порядке при охлаждении. Однако учёные не обратили особого внимания на необычные свойства этих жидкостей. Долгое время физики и химики в принципе не признавали жидких кристаллов, потому что их существование разрушало теорию о трёх состояниях вещества: твёрдом, жидком и газообразном. Научное доказательство существования жидких кристаллов было предоставлено Отто Леманном после многолетних исследований, в 1904 году.

Приложение В.
Несколько способов выращивания кристаллов
в домашних условиях

Основные этапы выращивания кристаллов

Процесс выращивания кристаллов в домашних условиях можно разделить на основные этапы.

Этап 1. Растворить соль, из которой будет расти кристалл, в подогретой воде (подогреть нужно для того, чтобы соль растворилось немного больше, чем может раствориться при комнатной температуре). Растворять соль нужно до тех пор, пока не появится уверенность, что соль уже больше не растворяется (раствор насыщен!). Рекомендуется использовать дистиллированную воду, т. е. не содержащую примесей других солей.

Этап 2. Насыщенный раствор нужно перелить в другую ёмкость, где можно производить выращивание кристаллов (с учётом того, что он будет увеличиваться). На этом этапе нужно следить, чтобы раствор не особо остывал.

Этап 3. Привязать на нитку кристаллик соли, нитку можно привязать, например, к карандашу и положить его на края стакана (ёмкости), где налит насыщенный раствор (этап 2). Кристаллик опустить в насыщенный раствор.

Этап 4. Перенести ёмкость с насыщенным раствором и кристалликом в место, где нет сквозняков, вибрации и сильного света (выращивание кристаллов требует соблюдение этих условий).

Этап 5. Накрыть чем-нибудь сверху ёмкость с кристалликом (например бумагой) от попадания пыли и мусора. Оставить раствор на пару дней.

Важно помнить:

1) кристаллик нельзя при росте без особой причины вынимать из раствора;

2) не допускать попадание мусора в насыщенный раствор, наиболее предпочтительно использовать дистиллированную воду;

3) следить за уровнем насыщенного раствора, периодически (раз в неделю или две) обновлять при испарении раствор.

Выращивание кристаллов из квасцов

Чтобы вырастить кристалл из квасцов понадобятся: кастрюля, мерный стакан, 2 стакана, карандаш, нитки, вода, 30 г квасцов из аптеки. Из квасцов можно вырастить очень красивый кристалл. Нужно нагреть в кастрюле 100 мл воды. Только нельзя доводить до кипения. Потом следует растворить в ней квасцы. Потом нужно перелить раствор в стакан и дать немного остыть. Потом следует привязать нитку к середине карандаша. Далее следует положить карандаш на край стакана, чтобы нитка оказалась в растворе. После того как на нитке образуются крошечные кристаллы, нужно вытащить её из раствора. Теперь следует снять с нитки все кристаллы, оставить лишь самый крупный. Далее нужно ещё раз слегка нагреть раствор, налитый в стакан и перемешать его. Теперь нужно перелить его без осадка во второй стакан. Далее нужно снова подвесить нитку с кристаллом. Теперь нужно ждать и наблюдать. Через несколько дней получится кристалл из квасцов.

Выращивание кристаллов из поваренной соли

Ещё можно выращивать кристаллы поваренной соли. Процесс выращивания не требует наличия каких-то особых химических препаратов. Нужно развести раствор поваренной соли следующим образом: налить воды в ёмкость (например стакан) и поставить его в кастрюлю с тёплой водой (не более 50°С — 60°С). Нужно насыпать пищевую соль в стакан и оставить минут на 5, предварительно помешав. За это время стакан с водой нагреется, а соль растворится. Желательно, чтобы температура воды пока не снижалась. Затем нужно добавить ещё соль и снова перемешать. Следует повторять этот этап до тех пор, пока соль уже не будет растворяться и будет оседать на дно стакана. Мы получим насыщенный раствор соли. Нужно перелить его в чистую ёмкость, избавившись при этом от излишек соли на дне. Нужно выбрать любой понравившийся более крупный кристаллик поваренной соли и положить его на дно стакана с насыщенным раствором. Можно кристаллик привязать за нитку и подвесить, чтобы он не касался стенок стакана. Теперь нужно подождать. Уже через пару дней можно заметить значительный для кристаллика рост. С каждым днём он будет увеличиваться. А если проделать всё то же ещё раз (приготовить насыщенный раствор соли и опустить в него этот кристаллик), то он будет расти гораздо быстрее (нужно извлечь кристаллик и использовать уже приготовленный раствор, добавляя в него воды и необходимую порцию пищевой соли). Не следует забывать, что раствор должен быть насыщенным, то есть при приготовлении раствора на дне стакана всегда должна оставаться соль (на всякий случай). Для сведений: в 100 г воды при температуре 20°С может раствориться приблизительно 35 г поваренной соли. С повышением температуры растворимость соли растёт. Так выращивают кристаллы поваренной соли (или кристаллы соли, форма и цвет которых больше нравится).

Выращивание кристаллов из медного купороса

Можно выращивать и кристаллы медного купороса. Кристаллы медного купороса — выращиваются подобным образом, также, как с поваренной солью: сначала готовится насыщенный раствор, затем в этот раствор опускается понравившийся маленький кристаллик соли медного купороса.

Приложение Г.
Практическое применение кристаллов

Электрические и оптические свойства кристаллов

Кристаллы сыграли важную роль во многих технических новинках двадцатого века. Некоторые кристаллы генерируют электрический заряд при деформации. Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи.

Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. При этом важную роль играют легирующие примеси, которые вводятся в кристаллическую решетку. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный.

Кристаллы используются также в некоторых лазерах для усиления волн СВЧ-диапазона и в лазерах для усиления световых волн. Кристаллы, обладающие пьезоэлектрическими свойствами, применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения.

Регулярное расположение молекул в жидких кристаллах обусловливает их особые оптические свойства. Их свойствами можно управлять, подвергая действию магнитного или электрического поля. Это используется в жидкокристаллических индикаторах часов, калькуляторов, компьютеров и последних моделей телевизоров.

Алмаз

Самый твердый и самый редкий из природных минералов — алмаз. Сегодня алмаз в первую очередь камень-работник, а не камень-украшение. Благодаря своей исключительной твердости алмаз играет громадную роль в технике. Алмазными пилами распиливают камни. Алмазная пила — это большой (до 2-х метров в диаметре) вращающийся стальной диск, на краях которого сделаны надрезы или зарубки. Мелкий порошок алмаза, смешанный с каким-нибудь клейким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень. Колоссальное значение имеет алмаз при бурении горных пород, в горных работах. В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия. Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь, твердые и сверхтвердые сплавы. Сам алмаз можно резать, шлифовать и гравировать тоже только алмазом. Наиболее ответственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Рубин, сапфир, гранат и наждак

Рубин и сапфир относятся к самым красивым и самым дорогим из драгоценных камней. У всех этих камней есть и другие качества, более скромные, но полезные. Кроваво-красный рубин и лазорево-синий сапфир — это родные братья, это вообще один и тот же минерал — корунд, окись алюминия А12О3. Разница в цвете возникла из-за очень малых примесей в окиси алюминия: ничтожная добавка хрома превращает бесцветный корунд в кроваво-красный рубин, окись титана — в сапфир. Есть корунды и других цветов. Есть у них ещё со-всем скромный, невзрачный брат: бурый, непрозрачный, мелкий корунд — наждак, которым чистят металл, из которого делают наждачную шкурку. Корунд со всеми его разновидностями — это один из самых твердых камней на Земле, самый твердый после алмаза. Корундом можно сверлить, шлифовать, полировать, точить камень и металл. Из корунда и наждака делают точильные круги и бруски, шлифовальные порошки. Вся часовая промышленность работает на искусственных рубинах. На полупроводниковых заводах тончайшие схемы рисуют рубиновыми иглами. В текстильной и химической промышленности рубиновые нитеводители вытягивают нити из искусственных волокон, из капрона, из нейлона.

Мощный луч лазера громадный мощностью. Он легко прожигает листовой металл, сваривает металлические провода, прожигает металлические трубы, сверлит тончайшие отверстия в твердых сплавах, алмазе. Эти функции выполняет твердый лазер, где используется рубин, гранат с неодитом. В глазной хирургии применяется чаще всего неодиновые лазеры и лазеры на рубине. В наземных системах ближнего радиуса действия часто используются инжекционные лазеры на арсениде галлия. Появились и новые лазерные кристаллы: флюорит, гранаты, арсенид галлия и др.

Сапфир прозрачен, поэтому из него делают пластины для оптических приборов. Основная масса кристаллов сапфира идет в полупроводниковую промышленность.

Кварц

Кремень, аметист, яшма, опал, халцедон — все это разновидности кварца. Мелкие зернышки кварца образуют песок. А самая красивая, самая чудесная разновидность кварца — это и есть горный хрусталь, т.е. прозрачные кристаллы кварца. Поэтому из прозрачного кварца делают линзы, призмы и др. детали оптических приборов. Особенно удивительны электрические свойства кварца. Если сжимать или растягивать кристалл кварца, на его гранях возникают электрические заряды. Это — пьезоэлектрический эффект в кристаллах. В наши дни в качестве пьезоэлектриков используют не только кварц, но и многие другие, в основном искусственно синтезированные вещества: синетову соль, титанат бария, дигидрофосфаты калия и аммония (КДР и АДР) и многие другие. Существуют и пьезоэлектрические методы измерения давления крови в кровеносных сосудах человека и давления соков в стеблях и стволах растений. Пьезоэлектропластинками измеряют, например, давление в стволе артиллерийского орудия при выстреле, давление в момент взрыва бомбы, мгновенные давления в цилиндрах двигате-лей при взрыве в них горячих газов.

Электрооптическая промышленность — это промышленность кристаллов, не имеющих центра симметрии. Эта промышленность очень велика и разнообразна, на её заводах выращивают и обрабатывают сотни наименований кристаллов для применения в оптике, акустике, радиоэлектронике, в лазерной технике.

Поляроид

В технике также нашел своё применение поликристаллический материал поляроид. Поляроид — это тонкая прозрачная пленка, сплошь заполненная крохотными прозрачными игольчатыми кристалликами вещества, двупреломляющего и поляризующего свет. Все кристаллики расположены параллельно друг другу, поэтому все они одинаково поляризуют свет, проходящий через пленку.

Поляроидные пленки применяются в поляроидных очках. Поляроиды гасят блики отраженного света, пропуская весь остальной свет. Они незаменимы для полярников, которым постоянно приходится смотреть на ослепительное отражение солнечных лучей от заледеневшего снежного поля.

Поляроидные стекла помогут предотвратить столкновения встречных автомобилей, которые очень часто случаются из-за того, что огни встречной машины ослепляют шофера, и он не видит этой машины. Если же ветровые стекла автомобилей и стекла автомобильных фонарей сделать из поляроида, причем повернуть оба поляроида так, чтобы их оптические оси были смещены, то ветровое стекло не пропустит света фонарей встречного автомобиля, "погасит его".

Приложение Д.
Начало эксперимента

1. Достаём всё необходимое для выращивания кристалла: инструкцию, ёмкость для размешивания, контейнер для выращивания, цветные камешки, химическое вещество, палочку для размешивания.

2. Чтобы не получить химический
ожог, одеваем перчатки.

3. Высыпаем цветные камешки
в контейнер для выращивания.

4. Делаем химический раствор, заливаем камешки раствором, добавляем «семена» кристалла и ставим в тихое, спокойное место.

Приложение Е.
Фотодневник эксперимента

Изначально кристаллами называли горный хрусталь - безупречный в своей холодной красоте прозрачный кварц. В прежние времена, когда ученые еще не могли объяснить причину и принцип их образования, кристаллам приписывали всевозможные волшебные свойства, свидетельство тому - многочисленные легенды и сказания, в которых упоминаются магические кристаллы, способные исцелять больных или показывать будущее. Современная кристаллофизика развеяла весь этот романтический туман, издавна окутывающий кристаллы, и дала четкое определение, что такое кристалл с научной точки зрения.

Кристалл - что это такое

Кристалл - это твердое тело природного происхождения либо образованное в лабораторных условиях, имеющее форму правильного многогранника. Правильность формы кристалла основана на его внутренней структуре - частицы вещества, из которых слагается кристалл (молекулы, атомы и ионы), располагаются в нем в определенной закономерности и образуют периодично-повторяющуюся трехмерную пространственную укладку, иначе называемую «кристаллической решеткой».

Виды и типы кристаллов

Ученые, занимающиеся изучением кристаллов, различают такие понятия, как «кристалл идеальный» и «кристалл реальный».

Идеальный кристалл

Идеальный кристалл - это некая абстрактная математическая модель кристалла, в которой ему приписывается абсолютно правильная форма, соответствующая его кристаллической решетке, полная симметрия и идеально ровные грани. Проще говоря, идеальный кристалл - это кристалл с полным набором всех качеств, свойств и характеристик, присущих данному виду кристаллов.

Реальный кристалл

Реальный кристалл - это тот кристалл, что существует в действительности. В отличие от идеального, у него имеются некоторые дефекты внутренней структуры, грани его не безупречны, а симметрия понижена. Но при всех этих недостатках в реальном кристалле сохраняется то главное свойство, которое и делает его кристаллом - частицы в нем располагаются в закономерном порядке.

Происхождение кристаллов

  • Природные (натуральные) кристаллы зарождаются и вырастают в недрах Земли в течение длительного времени в условиях сверхвысоких температур и огромного давления.
  • Искусственные кристаллы люди научились выращивать не только в лабораториях, но даже в домашних условиях. Кстати, о том, как самому вырастить соляной кристалл из раствора обычной поваренной соли, вы можете узнать из нашей статьи .

Вещества, образующие кристаллы

Кристаллы - это не только алмазы, аметисты, изумруды, сапфиры и прочие драгоценные и полудрагоценные камни, как некоторые из нас привыкли считать. Помимо этих самых известных и красивых кристаллов в природе существует множество других веществ, имеющих кристаллическое строение. Самым распространенным веществом, обладающим способностью образовывать кристаллы, является обычная вода. Как выглядят кристаллы воды, знают даже дети -льдинки и снежинки хорошо всем известны.

Натуральные кристаллы... Их еще называют красивыми, редко встречающимися камнями или твердыми телами. Мы представляем себе камень кристалл в виде крупного, яркого, прозрачного или бесцветного многогранника, имеющего идеальные блестящие грани. В жизни нам чаще встречаются такие твердые вещества в виде зернышек неправильной формы, песчинок, обломков. Но свойства у них такие же, как и у совершенных крупных кристаллов. Окунитесь вместе с нами в волшебный мир натуральных камней кристаллов, познакомьтесь с их строением, формами, видами. Что ж, в путь...

Таинство кристаллов

Мир кристаллов - прекрасный и таинственный. Разноцветные камушки еще с детства манят и притягивают нас своей красотой. Их загадочность мы чувствуем на интуитивном уровне и любуемся их естественной природной красотой. Людям всегда хотелось узнать как можно больше о натуральных твердых веществах, о свойствах кристаллов, становлении их форм, росте и структуре.

Мир этих камней такой необычный, что хочется заглянуть к ним внутрь. Что же увидим мы там? Перед глазами откроется картина бесконечно тянущихся, строго упорядоченных рядов атомов, молекул и ионов. Все они строго подчиняются законам, правящим в мире камней кристаллов.

Кристаллические вещества распространены в природе очень широко, ведь все горные породы состоят из них. А из горных пород состоит вся земная кора. Оказывается, эти необычные вещества можно даже вырастить дома самому. Важно отметить, что "кристалл" на древнегреческом языке обозначал "лед" или "горный хрусталь".

Что собой представляет камень кристалл?

Что говорят школьные учебники о кристаллах? В них говорится, что это твердые тела, которые образуются под влиянием природных или лабораторных условий и имеют вид многогранников. Геометрическое строение данных тел непогрешимо строгое. Поверхность кристаллических фигур составляют совершенные плоскости - грани, которые пересекаются по прямым линиям, которые называется ребрами. В точках пересечения ребер возникают вершины.

Твердое состояние вещества и есть кристалл. У него существует определенная форма, конкретное количество граней, зависящее от расположения атомов. Итак, твердые тела, в которых молекулы, атомы, ионы располагаются в строгой закономерности в виде узлов пространственных решеток.

Мы чаще всего ассоциируем кристаллы с редкими и красивыми драгоценными камнями. И это не зря, алмазы тоже являются кристаллами. Но не все твердые тела отличаются редкостью и красотой. Ведь частички соли и сахара - тоже кристаллики. Вокруг нас сотни веществ в виде них. Одним из этих тел считается замерзшая вода (лед или снежинки).

Образование различных форм кристаллов

В природе минералы образуются в результате породообразующих процессов. Растворы минералов в виде горячих и расплавленных пород лежат глубоко под землей. При выталкивании этих раскаленных пород на поверхность земли происходит их остывание. Охлаждаются вещества очень медленно. Из минералов образуются кристаллы в форме твердых тел. Например, в граните присутствуют минералы кварца, полевого шпата и слюды.

В каждом кристаллике находится миллион отдельных элементов (монокристаллов). Ячейку кристаллической решетки можно представить в виде квадрата с атомами по углам. Это могут быть атомы кислорода или других элементов. Известно, что кристаллы могут реагировать на различные энергии, запоминать отношение к ним людей. Вот почему их используют для исцеления и очищения. Кристаллы могут быть всевозможных форм. В зависимости от этого их делят на 6 больших видов.

Разные типы и виды природных твердых тел

Размеры кристаллов тоже могут быть разными. Все твердые тела делят на идеальные и реальные. К идеальным относятся тела с гладкими гранями, строгим дальним порядком, определенной симметрией кристаллической решетки и прочими параметрами. К реальным кристаллам зачисляют те, которые встречаются в реальной жизни. В них могут быть примеси, понижающие симметрию кристаллической решетки, гладкость граней, оптические свойства. Оба вида камней объединяет правило расположения атомов в вышеописанной решетке.

Еще по одному критерию деления их распределяют на природные и искусственные. Для роста природных кристаллов нужны естественные условия. Искусственные твердые тела выращиваются в лабораторных или домашних условиях.

По эстетико-экономическому критерию их делят на драгоценные и недрагоценные камни. Драгоценные минералы обладают редкостью и красотой. К ним относятся изумруд, алмаз, аметист, рубин, сапфир и другие.

Строение и формы скоплений твердых веществ

Одновершинные кристаллы относятся к шестигранным камням с пирамидальной вершиной. Основание таких генераторных минералов более широкое. Встречаются кристаллы с двумя вершинами - Инь и Ян. Их используют в медитации для равновесия материального и духовного начал.

Минералы, у которых 2 из 6 граней сбоку шире всех остальных, называются пластинчатыми. Они применяются для телепатического исцеления.

Образованные в результате ударов или трещин кристаллы, раскладывающиеся после этого на 7 оттенков, называются радужными. Они снимают депрессию и разочарование.

Минералы с различными включениями других элементов называются кристаллами-призраками. Сначала они перестают расти, потом на них оседают другие материалы, а затем опять возобновляется рост вокруг них. Таким образом, заметны контуры минерала, который прекратил рост, поэтому он кажется призрачным. Такие кристаллы используют для привлечения урожая на садовых участках.

Необычные друзы

Очень красивым зрелищем являются друзы. Это собрание множества кристаллов на одном основании. Они имеют положительную и отрицательную полярность. С их помощью очищается воздух и перезаряжается атмосфера. В природе встречаются друзы кварца, изумруда, топаза. Человеку они несут спокойствие и гармонию.

Друзами еще называют сросшиеся кристаллы. Чаще всего такому явлению подвержены гранаты, пириты, флюориты. Они часто выставляются в виде экспонатов музеев.

Мелкие сросшиеся кристаллики называют щеткой, большие минералы именуют цветком. Очень красивой разновидностью друз являются жеоды. Они растут на стенках. Друзы могут быть совсем маленькими и большими. Это очень ценные находки. Высоко ценятся друзы агата, селенита, аметиста, цитрина, мориона.

Как кристаллы хранят информацию и знания?

Ученые установили, что на гранях кристаллов находятся треугольнички, указывающие на наличие в них знаний. Эти сведения может получить только определенный человек. Если такой человек появится, то камни отдадут ему свое истинное нутро.

Кристаллы способны передавать вибрации, пробуждать высшие силы сознания, уравновешивать душевные силы. Поэтому их часто используют в медитациях. Предыдущие цивилизации хранили информацию именно в камнях. Например, горный хрусталь считали драгоценным камнем богов. Кристаллы почитали, как живых существ. Даже у "космоса" первоначальным значением было "драгоценный камень".

Драгоценные камни

Важно отметить, что драгоценные кристаллы в необработанной форме - не такие уж красивые. Их еще называют камнями или минералами. Драгоценными они называются, потому что очень красивы в огранке и используются в ювелирном деле. Многим знакомы драгоценные камни аметисты, бриллианты, сапфиры, рубины.

Самым твердым камнем считается алмаз. Хрупкий кристалл травянисто-зеленого цвета - изумруд. Разновидностью минерала корунда красного цвета является рубин. Месторождения этого кристалла существуют почти на всех континентах. Что считается неоспоримым его идеалом? Бирманские рубины. Месторождения рубинов в РФ находятся в Челябинской и Свердловской областях.

Какие еще есть дорогостоящие минералы? Прозрачными драгоценными кристаллами различной окраски - от бледно-голубой до темно-синей - являются сапфиры. Это хоть и редкий минерал, но ценится ниже рубина.

Дорогой разновидностью кварца является прекрасный драгоценный камень аметист. Когда-то он был вставлен первосвященником Аароном в число 12 камней его пекторали. Аметисты имеет красивый фиолетовый или лиловый отлив.

Российские алмазы

Итак, самый твердый кристалл - алмаз - добывают из кимберлитовых трубок, образовавшихся в результате извержений подземных вулканов. Кристаллическая решетка этого камня образуется под воздействием высокой температуры и высокого давления углерода.

Добыча алмазов в России началась в Якутии только в середине прошлого века. Сегодня РФ уже находится в лидерах по добыче этих драгоценных камней. Ежегодно на добычу алмазов в России выделяются миллиарды рублей. Стоит отметить, что на тонну кимберлитовых трубок приходится несколько карат алмазов.

Муниципальное общеобразовательное учреждение лицей № 6

Ворошиловского района

Городской конкурс учебно-

исследовательских работ

«Я и Земля» им. В. И.

Вернадского

Кристаллы знакомые и загадочные.

Секция физики

Выполнили: Берко Мария,

Нефёдова Ирина,

Волгоград

Введение…………………………………………………………………………..3

Основная часть

История возникновения кристаллов и Кристаллография……………………..5

Что же такое кристаллы………………………………………………………….7

Кристаллическое состояние кристаллов…………………………………….....13

Кристаллографические системы…………………………………………..........26

Применение кристаллов…………………………………………………………27

Экспериментальная часть

Выращивание кристалла из медного купороса и алюмокалиевых квасцов…29

Заключение

Актуальность. Объект и предмет. Проблема.

При подборе темы мы отталкивались от практической части: «Выращивание кристаллов». Проанализировав теорию опыта, мы заинтересовались выбранной нами темой и решили более подробно узнать о кристаллах и о его применении в современном мире.

Природные кристаллы всегда возбуждали любопытство у людей. Их цвет, блеск и форма затрагивали человеческое чувство прекрасного, и люди украшали ими себя и жилище. С кристаллами были связаны суеверия; как амулеты, они должны были не только ограждать своих владельцев от злых духов, но и наделять их сверхъестественными способностями. Позднее, когда те же самые минералы стали разрезать и полировать, как драгоценные камни , многие суеверия сохранились в талисманах «на счастье» и «своих камнях», соответствующих месяцу рождения. Все природные драгоценные камни, кроме опала, являются кристаллическими, и многие из них, такие, как алмаз, рубин, сапфир и изумруд, попадаются в виде прекрасно ограненных кристаллов. Украшения из кристаллов сейчас столь же популярны, как и во время неолита. Сегодня же кристаллы, помимо их свойства соблазна, нашли очень большое применение в науке и технике: полупроводники, призмы и линзы для оптических приборов, твердотельные лазеры, пьезоэлектрики, сегнетоэлектрики, оптические и электрооптические кристаллы, ферромагнетики и ферриты, монокристаллы металлов высокой чистоты.

Многие ученые, внесшие большой вклад в развитие химии и минералогии, начинали свои первые опыты с выращивания кристаллов, пытаясь понять, как они образуются.

И мы решили начать свою исследовательскую работу, поставив цель: получить кристаллы различных веществ в домашних условиях.

Цели исследования

1) Вырастить кристаллы правильной формы в домашних условиях

Задачи исследования

1) Познакомиться с историей открытия кристаллов

2) Понять необходимость применения кристаллов в современном мире

3) Исследовать свойства и структуру кристаллов

4) Выяснить где находят широкое применение кристаллы

5) Сделать выводы на основании проведенной работы.

Промышленные проблемы

1) Кристаллы долго растут

2) Некоторые кристаллы являются дорогими для производства (алмаз, рубин)

3) Сложно вырастить кристалл правильной формы

Методы исследования

1) Поисковый метод

2) Экспериментальный метод

1. История возникновения кристаллов.

Кристаллография.

Кристаллом (от греч. krystallos – «прозрачный лед») вначале называли прозрачный кварц (горный хрусталь), встречавшийся в Альпах. Горный хрусталь принимали за лед, затвердевший от холода до такой степени, что он уже не плавится. Первоначально главную особенность кристалла видели в его прозрачности, и это слово употребляли в применении ко всем прозрачным природным твердым телам. Позднее стали изготавливать стекло, не уступавшее в блеске и прозрачности природным веществам. Предметы из такого стекла тоже называли «кристальными». Еще и сегодня стекло особой прозрачности называется хрустальным, «магический» шар гадалок – хрустальным шаром.

Удивительной особенностью горного хрусталя и многих других прозрачных минералов являются их гладкие плоские грани. В конце 17 в. было подмечено, что имеется определенная симметрия в их расположении. Было установлено также, что некоторые непрозрачные минералы также имеют естественную правильную огранку и что форма огранки характерна для того или иного минерала. Возникла догадка, что форма может быть связана с внутренним строением. В конце концов, кристаллами стали называть все твердые вещества, имеющие природную плоскую огранку.

Заметной вехой в истории кристаллографии явилась книга, написанная в 1784 французским аббатом Р. Гаюи. Он выдвинул предположение, что кристаллы возникают в результате правильной укладки крохотных одинаковых частиц, которые он назвал «молекулярными блоками». Гаюи показал, каким образом можно получить гладкие плоские грани кальцита, укладывая такие «кирпичики». Различия в форме разных веществ он объяснил разницей, как в форме «кирпичиков», так и в способе их укладки.

Со времен Гаюи было принято как гипотеза, что в правильной форме кристалла находит отражение, упорядоченное внутреннее расположение частиц, но это было подтверждено лишь в 1912, когда М. фон Лауэ в Мюнхене установил, что рентгеновские лучи дифрагируют на атомных плоскостях внутри кристалла. Падая на фотографическую пластинку, дифрагированные лучи создают на ней геометрический узор из темных пятен. По положению и интенсивности таких пятен можно рассчитать размеры структурной единицы и определить расположение атомов в ней.

Имея в виду возможность прямого исследования внутренней структуры, многие занимающиеся кристаллографией стали употреблять термин «кристалл» в применении ко всем твердым веществам с упорядоченной внутренней структурой. Нужны лишь благоприятные условия, полагали они, чтобы внутренняя упорядоченность проявилась в виде правильной наружной огранки. Некоторые ученые предпочитают называть твердые вещества с внешне не проявляющейся внутренней упорядоченностью «кристаллическими», а под «кристаллами» понимать, как это было когда-то, твердые вещества с природной огранкой.

1.1 Оптическая кристаллография.

Большое значение в описании и идентификации кристаллов имеют их оптические свойства. Когда свет падает на прозрачный кристалл, он частично отражается, а частично проходит внутрь кристалла. Свет, отражающийся от кристалла, придает ему блеск и цвет, а свет, проходящий внутрь кристалла, создает эффекты, которые определяются его оптическими свойствами

2. Что же такое кристаллы?

Кристаллы - твёрдые тела, имеющие естественную форму правильных многогранников. Правильная форма кристаллов является следствием упорядоченного расположения частиц, из которых они состоят: атомов, молекул, ионов. Эти частицы выстраиваются в строгом порядке “как солдаты в строю” (в отличие от частиц в газах, жидкостях и в аморфных твёрдых телах). От порядка расположения частиц зависит форма кристалла: куб, призма, октаэдр или другой многогранник.

Рис. 1 формы кристаллов

Одиночные крупные кристаллы встречаются редко. Большинство веществ, имеющих кристаллическое строение, образует много маленьких хаотически расположенных сросшихся кристалликов, иногда различимых только в микроскоп, и называются они тогда поликристаллами (металлы, сплавы, многие горные породы).

Физические свойства одиночных кристаллов (монокристаллов) - такие как теплопроводность, электропроводность , упругость, прочность - отличаются по разным направлениям (в отличие от поликристаллических и аморфных тел).

Природные минералы обычно описывают следующими свойствами: химическая формула и класс, цвет, тип кристаллической решётки или сингония, твёрдость, блеск, плотность, цвет черты.

Твёрдость измеряется по десятибалльной шкале Мооса. Самой низкой твёрдостью, принятой за единицу, обладает минерал тальк. Самая большая твёрдость у алмаза, она равна 10. Если царапать друг о друга два минерала, то более твёрдый оставляет царапину на менее твёрдом - так сравнивают минералы по твёрдости. (Твёрдость человеческого ногтя равна 2 - 2,5, поэтому можно быстро определить, больше или меньше “двух” твёрдость данного материала или минерала.)

Блеск минерала бывает металлическим, металловидным, стеклянным, алмазным, матовым, восковым, перламутровым, шелковистым, смолистым или жирным.

Цвет черты определяют, проводя минералом по фарфоровой шероховатой пластинке (её называют бисквитом). Минералы описывают и другими свойствами: прозрачность, излом, спайность, магнетизм, показатель преломления.

· Электроэнергетика, электротехника" href="/text/category/yelektroyenergetika__yelektrotehnika/" rel="bookmark">электротехнике .

· Пирит - серный колчедан

· Формула: FeS2

· Класс: сульфиды

· Цвет: светло-золотистый

· Сингония: кубическая

· Твёрдость: 6-6,5

· Плотность (г/см3): 4,95-5,10

· Блеск: металлический рис. 3 Пирит

· Цвет черты: зеленовато-чёрный, коричнево-чёрный

Название минерала происходит от греческого слова “огнеподобный” из-за способности высекать искры при ударе. Ещё его называют “золотом для дураков” из-за похожести на золото. В древней Индии кристаллы пирита носили при себе в качестве амулета, чтобы оградить себя от нападения от крокодила.

· Арагонит - карбонат кальция, твёрдая разновидность кальцита

· Формула: CaCO3

· Класс: карбонаты

· Цвет: белый, серый, бледно - жёлтый, зелёный, синий, фиолетовый, чёрный

· https://pandia.ru/text/78/007/images/image005_49.jpg" alt="Исландский шпат" align="left" width="216" height="168 ">

В 1669 году профессор Копенгагенского Бартолин обнаружил, что луч света, падающий перпендикулярно на поверхность кристалла исландского шпата, разделяется на два луча: один луч продолжает путь без изменения направления и называется обыкновенным, а другой отклоняется, нарушая обычный закон преломления света, и называется необыкновенным. Если положить кристалл исландского шпата на бумагу с рисунком или текстом, то мы увидим раздвоенное изображение. (*Можно сразу расположить на бумажке с текстом). Исландский шпат широко используется в оптическом приборостроении для изготовления поляризационных призм. Крупнейшие в мире месторождения исландского шпата находятся в России в районе Нижней Тунгуски.

Используется как руда для получения ванадия, который необходим для изготовления бронебойной стали.

Кроме представленных выше примеров кристаллов существует большое количество других минералов с видимым кристаллическим строением: кварц, галит, флюорит, турмалин, доломит, цианит, целестит и т. д.

Наряду с кристаллами можно разместить для сравнения минералы аморфного строения, например, янтарь, обсидиан. Если возникнет редкая возможность заиметь тектит, то ей тоже надо воспользоваться. Тектиты остаются самыми загадочными из всех когда-либо найденных на Земле камней, общепринятой гипотезы их происхождения не существует. Одна из гипотез говорит, что они обязаны рождением небесным телам, хотя и состоят из вещества нашей планеты. Миллионы лет назад Земля бомбардировалась крупными метеоритами, астероидами . При столкновении крупного метеорита с поверхностью Земли происходил взрыв, земные породы оплавлялись, разлетаясь в стороны, и образовывались стеклянные обтекаемого вида тела жёлтого, зелёного, чёрного цвета. Но это лишь одна из гипотез, хотя и самая правдоподобная. Есть предположения о кометном происхождении тектитов, о возникновении тектитов при посадках инопланетных кораблей и при столкновении Земли со сгустками сверхплотного нейтронного вещества.

2.1. Искусственные кристаллы.

С давних пор человек мечтал синтезировать камни, столь же драгоценные, как и встречающиеся в природных условиях. До 20 в. такие попытки были безуспешны. Но в 1902 удалось получить рубины и сапфиры, обладающие свойствами природных камней. Позднее, в конце 1940-х годов были синтезированы изумруды, а в 1955 фирма «Дженерал электрик» и Физический институт АН СССР сообщили об изготовлении искусственных алмазов.

Многие технологические потребности в кристаллах явились стимулом к исследованию методов выращивания кристаллов с заранее заданными химическими, физическими и электрическими свойствами. Труды исследователей не пропали даром, и были найдены способы выращивания больших кристаллов сотен веществ, многие из которых не имеют природного аналога. В лаборатории кристаллы выращиваются в тщательно контролируемых условиях, обеспечивающих нужные свойства, но в принципе лабораторные кристаллы образуются так же, как и в природе – из раствора, расплава или из паров. Так, пьезоэлектрические кристаллы сегнетовой соли выращиваются из водного раствора при атмосферном давлении. Большие кристаллы оптического кварца выращиваются тоже из раствора, но при температурах 350–450°C и давлении 140 МПа. Рубины синтезируют при атмосферном давлении из порошка оксида алюминия , расплавляемого при температуре 2050° C. Кристаллы карбида кремния, применяемые в качестве абразива, получают из паров в электропечи.

3. Кристаллическое состояние.

Атомы, из которых состоят газы, жидкости и твердые вещества, имеют разную степень упорядоченности. В газе атомы и небольшие группы атомов, соединенные в молекулы, находятся в постоянном беспорядочном движении. Если охлаждать газ, то достигается температура, при которой молекулы сближаются друг с другом, насколько это возможно, и образуется жидкость. Но атомы и молекулы жидкости все-таки могут скользить относительно друг друга. При охлаждении некоторых жидкостей, например, воды, достигается температура, при которой молекулы застывают в относительной неподвижности кристаллического состояния. Эта температура, разная для всех жидкостей, называется температурой замерзания. (Вода замерзает при 0° С; при этом молекулы воды упорядоченно соединяются друг с другом, образуя правильную геометрическую фигуру.) У каждой частицы вещества (атома или молекулы), находящегося в кристаллическом состоянии, окружение точно такое же, как и у любой другой частицы того же типа во всем кристалле. Другими словами, ее окружают вполне определенные частицы, находящиеся на вполне определенных расстояниях от нее. Именно это упорядоченное трехмерное расположение характерно для кристаллов и отличает их от других твердых веществ.

3.1. Образование кристаллов.

Вообще говоря, кристаллы образуются тремя путями: из расплава, из раствора и из паров. Примером кристаллизации из расплава может служить образование льда из воды, так как вода, в сущности, не что иное, как расплавленный лед. К кристаллизации из расплава относится и процесс образования вулканических пород. Магма, проникающая в трещины земной коры или вытесняемая в виде лавы на ее поверхность, содержит многие элементы в разупорядоченном состоянии. При охлаждении магмы или лавы атомы и ионы разных элементов притягиваются друг к другу, образуя кристаллы различных минералов. В таких условиях возникает много зародышей кристаллов. Увеличиваясь в размере, они мешают, друг другу расти, а поэтому гладкие наружные грани у них образуются редко.

В природе кристаллы образуются также из растворов, примером чему могут служить сотни миллионов тонн соли, выпавшей из морской воды. Такой процесс можно продемонстрировать в лаборатории с водным раствором хлорида натрия. Если дать воде возможность медленно испаряться, то, в конце концов, раствор станет насыщенным и дальнейшее испарение приведет к выделению соли. Положительно заряженные ионы натрия притягивают отрицательно заряженные ионы хлора, в результате чего образуется зародыш кристалла хлорида натрия, который выделяется из раствора. При дальнейшем испарении другие ионы пристраиваются к образовавшемуся ранее зародышу, и постепенно растет кристалл с характерной внутренней упорядоченностью и гладкими наружными гранями.

Кристаллы образуются также непосредственно из пара или газа. При охлаждении газа электрические силы притяжения объединяют атомы или молекулы в кристаллическое твердое вещество. Так образуются снежинки; воздух, содержащий влагу, охлаждается, и прямо из него вырастают снежинки той или иной формы.

3.2. Формы кристаллов.

Хотя с первого взгляда все грани, определяющие форму кристалла, могут показаться одинаковыми, при тщательном исследовании обнаруживаются небольшие различия. Это могут быть различия в блеске, нерегулярностях роста, дефектах травления или полосчатости. Тем не менее, некоторые грани оказываются совершенно одинаковыми. Такие грани состоят из одинаковых и одинаково расположенных атомов и соответствуют определенной форме кристаллов. Распределение граней разных форм выявляет симметрию, так как все грани одной формы имеют одинаковое отношение к элементу симметрии. Некоторые кристаллы имеют грани только одной формы, а другие – грани многих форм. На рис. 1 показаны три различные формы кубической системы.

https://pandia.ru/text/78/007/images/image008_37.jpg" width="265 height=115" height="115">

Рис. 7. Формы кристаллов кубической системы. а – куб; б – октаэдр; в – додекаэдр; г – комбинация куба, октаэдра и додекаэдра.

3.3 Структура кристалла .

Кристалл представляет собой правильную трехмерную решетку, составленную из атомов или молекул. Структура кристалла – это пространственное расположение его атомов (или молекул). Геометрия такого расположения подобна рисунку на обоях, в которых основной элемент рисунка повторяется многократно. Одинаковые точки можно расположить на плоскости пятью разными способами, допускающими бесконечное повторение. Для пространства же имеется 14 способов расположения одинаковых точек, удовлетворяющих требованию, чтобы у каждой из них было одно и то же окружение. Это пространственные решетки, называемые также решетками Браве по имени французского ученого О. Браве, который в 1848 доказал, что число возможных решеток такого рода равно 14.

Требование того, чтобы каждый узел решетки имел одинаковое атомное окружение, применительно к кристаллам налагает ограничения на сам основной элемент рисунка. При повторении он должен заполнять все пространство, не оставляя пустых узлов. Было установлено, что существует лишь 32 варианта расположения объектов вокруг некоторой точки (например, атомов вокруг узла решетки), удовлетворяющих этому требованию. Это так называемые 32 пространственные группы. В сочетании с 14 пространственными решетками они дают 230 возможных вариантов расположения объектов в пространстве, называемых пространственными группами. Поскольку структура кристалла определяется не только пространственным расположением атомов, но и их типом, число структур очень велико.

Общими для всех кристаллов являются 14 пространственных решеток, наименьшие формообразующие ячейки. Элементарная ячейка любого кристалла подобна одной из них, но ее размеры определяются размерами, числом и расположением атомов. Элементарная ячейка в виде параллелепипеда, вообще говоря, аналогична «кирпичику» Гаюи, т. е. базисному элементу, при повторении которого образуется кристалл. Рентгеновский анализ позволяет с большой точностью определять длину сторон ячейки и углы между сторонами. Элементарные ячейки очень малы и имеют порядок нанометра (10–9 м). Сторона кубической элементарной ячейки хлорида натрия равна 0,56 нм. Таким образом, в крохотной крупинке обычной поваренной соли содержится примерно миллион элементарных ячеек, уложенных одна к другой.

Методом дифракции рентгеновских лучей (рентгенография) можно определить не только абсолютные размеры элементарной ячейки, но также пространственную группу и даже расположение атомов в пространстве, т. е. структуру кристалла. Важную роль в исследовании кристаллических структур сыграли также методы дифракции электронов (электронография), дифракции нейтронов (нейтронография) и инфракрасной спектроскопии.

3.4. Морфология кристаллов.

Кристаллы имеют некую внутреннюю симметрию, которая не обнаруживается в бесформенной крупинке. Симметрия кристаллов получает наружное выражение только тогда, когда они имеют возможность свободно расти без каких-либо помех. Но даже хорошо организованные кристаллы редко имеют совершенную форму, и нет двух кристаллов, которые были бы совершенно одинаковы.

Форма кристалла зависит от многих факторов, один из которых – форма элементарной ячейки. Если такой «кирпичик» повторить одинаковое число раз параллельно каждой из его сторон, то получится кристалл, форма и относительные размеры которого точно такие же, как у элементарной ячейки. Близкая к этому картина характерна для многих кристаллических веществ. Но на форму оказывают влияние и такие факторы, как температура, давление, чистота, концентрация и направление движения раствора. Поэтому кристаллы одного и того же вещества могут обнаруживать большое разнообразие форм. Различие форм связано с тем, как именно укладываются одинаковые «кирпичики».

Аналогия между элементарными ячейками и кирпичами очень полезна. Укладывая кирпичи так, чтобы их соответствующие стороны были параллельны, можно построить стену, длина, высота и толщина которой будут зависеть только от числа кирпичей, уложенных в данном направлении. Если же в определенном порядке удалять кирпичи, то можно получить миниатюрные лестничные марши с наклоном, зависящим от соотношения чисел кирпичей в подступенке и наступи ступеньки лестницы. Если на такую лестницу наложить линейку, то она образует угол, определяемый размерами кирпича и способом укладки. Углы наклона x и y симметричны независимо от относительных длин s и f.

Точно так же и кристалл может принимать ту или иную форму, если в строго определенном порядке пропускаются некоторые ряды или группы элементарных ячеек. Косые грани кристалла подобны лестницам, сложенным из кирпичей, но «кирпичики» здесь столь малы, что грани кристалла, выглядят, как гладкие поверхности. Углы между соответствующими гранями кристалла постоянны, независимо от его размера. Это установил в 1669 датчанин Н. Стено на примере кристаллов кварца. Тем самым он показал, что форма является характеристикой кристаллического вещества. Ныне известно, что форма кристалла зависит от размеров и формы элементарной ячейки, и положение Стено приняло обобщенную форму закона, согласно которому углы между соответствующими гранями кристаллов одного и того же вещества постоянны.

Размеры и форма граней изменяются от кристалла к кристаллу. Тем не менее, имеется некая внешняя симметрия, присущая всем хорошо ограненным кристаллам. Она обнаруживается в повторении углов и похожести граней, одинаковых в смысле внешнего вида, дефектов травления и особенностей роста. Если кристалл имеет почти совершенную форму, то его симметричные грани тоже подобны по размерам и форме.

До появления рентгеновской кристаллографии самым важным делом занимавшихся кристаллографией было измерение углов между гранями кристаллов. Вычерчивая на основе таких угловых измерений грани кристалла в стереографической или гномонической проекции, можно выявить симметричное расположение граней независимо от размера и формы. По такой проекции можно вычислить отношения осей, а затем выполнить чертеж кристалла.

3.5. Показатель преломления.

При переходе наклонного луча света из воздуха в кристалл его скорость распространения уменьшается; падающий луч отклоняется, или преломляется. Чем больше плотность кристалла и чем больше угол падения луча (i), тем больше угол преломления (r). Отношение sin i к sin r есть величина постоянная. Это обычно записывают в виде равенства sin i/sin r = n; константа n называется показателем преломления. Это самая важная из оптических характеристик кристалла, и ее можно очень точно измерить.

С позиций оптики все прозрачные вещества можно разделить на две группы: изотропные и анизотропные. К изотропным относятся кристаллы кубической системы и некристаллические вещества, например, стекло. В изотропных веществах свет распространяется во всех направлениях с одинаковой скоростью, и поэтому такие вещества характеризуются одним показателем преломления. Группу анизотропных веществ составляют кристаллы всех других кристаллографических систем. В веществах этой группы скорость света, а следовательно, и показатель преломления непрерывно изменяются при переходе от одного кристаллографического направления к другому. Когда свет входит в анизотропный кристалл, он разделяется на два луча, колеблющихся под прямым углом друг к другу и распространяющихся с разными скоростями. Такое явление называется двойным лучепреломлением; всякий анизотропный кристалл характеризуется двумя показателями преломления. Для гексагональных и тетрагональных кристаллов указывают максимальный и минимальный, т. е. «главные» показатели преломления. Один из этих главных показателей преломления соответствует лучу света, колеблющемуся параллельно оси c, а с другой – лучу света, колеблющемуся под прямым углом к этой оси. В орторомбических, моноклинных и триклинных кристаллах имеются три главных показателя преломления: максимальный, минимальный и промежуточный, определяемые лучами света, колеблющимися в трех взаимно перпендикулярных направлениях.

Поскольку показатели преломления зависят от химического состава и строения материала, они являются характеристическими величинами для каждого кристаллического твердого вещества, и их измерение служит эффективным методом его идентификации. Пользуясь простым рефрактометром, ювелир или специалист по драгоценным камням может измерить показатель преломления драгоценного камня, не вынимая его из оправы. С помощью поляризационного микроскопа минералог без особого труда определяет тип минерала, измеряя его показатели преломления и другие оптические характеристики на мелких крупинках. Плеохроизм. В анизотропных кристаллах свет, колеблющийся в разных кристаллографических направлениях, может поглощаться по-разному. Одно из возможных следствий такого явления, называемого плеохроизмом, – изменение цвета кристалла при изменении направления колебаний. В других кристаллах свет, колеблющийся в одном кристаллографическом направлении, может распространяться почти без потерь интенсивности, а под прямым углом к нему почти полностью поглощаться. На различиях в поглощении света тонкими ориентированными кристаллами основано действие таких поляризационных светофильтров, как поляроид.

3.6. Элементы симметрии.

Задолго до того, как 32 типа симметричных расположений точечных групп были определены рентгеновскими методами, они были выявлены путем исследования морфологии , т. е. формы и структуры кристаллов. На основании вида и расположения граней, а также углов между ними кристаллы приписывались одному из 32 кристаллографических классов. Поэтому пространственные группы и кристаллографические классы – это как бы синонимы, и существуют три основных элемента симметрии: плоскость, ось и центр.

3.7. Плоскость симметрии.

Многие хорошо известные нам предметы обладают симметрией относительно плоскости. Например, стул или стол можно представить себе разделенными на две одинаковые части. Точно так же плоскость симметрии делит кристалл на две части, каждая из которых является зеркальным отображением другой. (Плоскость симметрии иногда называют плоскостью зеркального отображения.)

3.8. Ось симметрии.

Ось симметрии – это воображаемая прямая, поворотом вокруг которой на часть полного оборота можно привести объект к совпадению с самим собой. В кристаллах возможны только пять видов осевой симметрии: 1-го порядка (эквивалентная отсутствию вращения), 2-го порядка (повторение через 180), 3-го порядка (повторение через 120), 4-го порядка (повторение через 90) и 6-го порядка (повторение через 60).

3.9. Центр симметрии.

Кристалл имеет центр симметрии, если любая прямая, мысленно проведенная через него, на противоположных сторонах поверхности кристалла проходит через одинаковые точки. Таким образом, на противоположных сторонах кристалла находятся одинаковые грани, ребра и углы.

Имеются 32 возможные комбинации плоскостей, осей и центров симметрии в кристаллах; каждой такой комбинацией определяется кристаллографичес-кий класс. Один класс не имеет симметрии; говорят, что он имеет одну ось вращения 1-го порядка.

3.10. Сигнолии.

Кристаллографические классы, или виды симметрии, объединяются в более крупные группировки, называемые системами или сингониями. Таких сингоний семь:

Таблица 1

В каждую сингонию входят кристаллы, у которых отмечается одинаковое расположение кристаллографических осей и одинаковые элементы симметрии.
Сингониеи называется гриппа видов симметрии, обладающих одним или несколькими одинаковыми элементами симметрии и имеющих одинаковое расположение кристаллографических осей.

Кубическая сингония. В этой сингонии кристаллизуются наиболее симметричные кристаллы. В кубической сингонии присутствует более одной оси симметрии выше второго порядка, т. е. L3 или L4 . Кристаллы кубической сингонии обязательно должны иметь четыре оси третьего порядка (4L3) и, кроме того, либо три взаимно перпендикулярные оси четвертого порядка (3L4), либо три оси второго порядка (3L2).
Максимальное количество элементов симметрии в кубической сингонии может быть выражено формулой 3L4 4L36L29PC. Кристаллы кубической сингонии встречаются в виде куба октаэдра, тетраэдра, ромбододекаэдра, пентагон-додекаэдра и др.

Рис. 8 Кристаллы кубической сигнолии:

1- куб (пирит, торианит, галенит, флюорит, перовскит); 2- кубооктаэдр (галенит); 3 – октаэдр (золото, хромит, магнетит, шпинель); 4-ромбододекаэдр (золото, гранат); 5- тетрагон - триоктаэдр (гранат, лейцит); 6 – комбинация двух тетраэдров (сфалерит); 7- пентагон-додекаэдр (пирит, гранат); 8- гексаэдр (алмаз); 9 – двойник прорастания куба (пирит, тюрканит. флюорит)

Сингонии средней категории. Эта группа объединяет кристаллы, обладающие только одной осью симметрии порядка выше второго. К средней категории относятся гексагональная, тетрагональная и тригональная сингонии. Гексагональная сингония характеризуется наличием одной оси симметрии шестого порядка (L6). Максимальное количество элементов симметрии может быть следующим" L56L27PC. Кристаллы гексагональной сингонии образуют приз мы, пирамиды, дипирамиды и др.

https://pandia.ru/text/78/007/images/image011_32.jpg" width="495" height="236 src=">

Рис. 10 Кристаллы тетрагальной сигнолии:

1- тетрагональная дипирамида (анатаз, циркон, ксенотим); 2- анатаз; 3- комбинация тетрагональной призмы с тетрагональной дипирамидой (циркон, брукит); 4- комбинация дипирамиды и двух призм (ксенотим, рутил, циркон);

5- комбинация двух призм с дипирамидой (везувиан, циркон); 6- комбинация двух тетрагональных призм и дипирамиды с пинакоидом (везувиан); 7- комбинация двух призм с двумя дипирамидами (касситерит); 8- двойник касситерита; 9,10- вульфенит, 11- шеелит.

4. Кристаллографические системы.

https://pandia.ru/text/78/007/images/image013_28.jpg" width="524" height="277 src=">

Рис. 11-2 7 разных способов упорядоченного расположения в пространстве одинаковых точек.

На рис. 11 представлены семь базисных ячеек решеток разной формы. Ромбоэдрическая и гексагональная решетки определяются одними и теми же осями. Таким образом, при наличии 32 симметрий точечных групп имеются только шесть основных форм элементарных ячеек. Соответственно форме основной «строительной» единицы 32 кристаллографических класса разделяются на шесть кристаллографических систем. Каждая кристаллографическая система имеет собственную систему координат, которыми определяются элементарная ячейка, а, следовательно, и грани кристалла. На рис. 11 это стороны a, b и c элементарной ячейки. Принято через c обозначать вертикальную сторону, через b – горизонтальную в плоскости чертежа и через a – горизонтальную сторону, перпендикулярную плоскости чертежа. Прямые, на которых лежат эти стороны, служат линиями отсчета и называются кристаллографическими осями. Угол между b и c обозначается a, между a и c – b, а между a и b – g. Названия кристаллографических систем, относительные длины и угловые соотношения между соответствующими кристаллографическими осями таковы:

Триклинная: a № b № c, a № b № g.

Моноклинная: a № b № c, a = g = 90°, b > 90°.

Орторомбическая: a № b № c, a = b = g = 90°.

Тетрагональная: a = b № c, a = b = g = 90°. Поскольку a и b в этой системе равны и равноценны, их обычно обозначают через a1, a2. Сторона c может быть больше либо меньше a.

Гексагональная: a = b № c, a = b = 90°, g = 120°. Элементарная ячейка гексагональных кристаллов обычно рассматривается как тройная и определяется тремя горизонтальными осями a1, a2, a3, составляющими угол 120° друг с другом и 90° с условно вертикальной осью c.

Кубическая (изометрическая): a = b = c, a = b = g = 90°.

На рис. 1 показаны разнообразные формы, которые могут иметь кристаллы, относящиеся к разным кристаллографическим системам.

5. Применение кристаллов.

Большое применительное значение кристаллы нашли в оптике. Опираясь на законы оптики, ученые искали прозрачный бесцветный и бездефектный минерал, из которого можно было бы шлифованием и полированием изготавливать линзы. Нужными оптическими и механическими свойствами обладают кристаллы неокрашенного кварца, и первые линзы, в том числе и для очков, изготавливались из них. Даже после появления искусственного оптического стекла потребность в кристаллах полностью не отпала; кристаллы кварца, кальцита и других прозрачных веществ, пропускающих ультрафиолетовое и инфракрасное излучение, до сих пор применяются для изготовления призм и линз оптических приборов.

Кристаллы сыграли важную роль во многих технических новинках 20 в. Некоторые кристаллы генерируют электрический заряд при деформации. Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи.

Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. При этом важную роль играют легирующие примеси, которые вводятся в кристаллическую решетку. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный.

Кристаллы используются также в некоторых мазерах для усиления волн СВЧ-диапазона и в лазерах для усиления световых волн. Кристаллы, обладающие пьезоэлектрическими свойствами, применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет.

Практическая часть.

Выращивание кристалла из медного купороса и алюмокалиевых квасцов.

Чтобы вырастить кристалл медного купороса, сначала нужно сделать перенасыщенный раствор: размешать в горячей воде такое количество медного купороса, которое потребуется, чтобы больше «не помещалось» этого вещества. Потом через тряпочку, сложенную вдвое, необходимо профильтровать раствор в другую банку. На следующий день на дне банки с раствором образуются маленькие кристаллы вещества – затравки. Нужно выбрать затравку правильной формы и привязать её ниточкой к карандашу. Раствор нужно разогреть и снова добавлять в него, размешивая, медный купорос до тех пор, пока раствор опять не станет насыщенным. Раствор снова нужно профильтровать в чистую банку и повесить туда затравку. До размера спичечного коробка кристалл будет расти приблизительно месяц. Время от времени банку и нитку нужно очищать от других кристалликов и доливать насыщенный раствор. Когда кристалл достигнет больших размеров, его нужно вынуть из банки, отрезать нитку и протереть маслом.

Выращивание больших монокристаллов соединений, растворимых в воде

disc"> Если образовалось множество мелких сросшихся бесформенных кристалликов, как после резкого охлаждения, то количество соли уменьшают и повторяют описанную стадию.

    Если кристаллики не образовались, раствору следует постоять ещё сутки; иначе, следует увеличить количество растворяемого вещества, повторив этап заново.

Эта стадия эксперимента должна обучить экспериментаторов правильно, выращивать затравку, которая далее будет исходным кирпичиком для получения огромной конструкции. Отберем подходящие по структуре кристаллики (с длинной ребра от 0,3 см и более) и будем хранить их отдельно в растворе соли в банке с притёртой пробкой вдали от источников высоких температур и света.

Надо помните: чем меньше выбранная вами затравка, чем она правильнее, тем легче раствору (системе) подстроиться под неё (как перламутру к пещинке, попавшей в мантию моллюска).

III. Выращивание монокристалла:

Снова готовим насыщенный раствор на основе исходного маточного. Для этого готовый раствор ставим на водяную баню и добавляем 0,5 чайной ложки вещества. Чем меньше мы добавим на этом этапе, тем лучше (можно также просто нагреть насыщенный раствор, без добавления вещества). Греем и перемешиваем. Как только вещество растворилось, колбу вынимаем, и раствор переливаем в заранее приготовленный нагретый стакан. Стакан с раствором ставим на выбранное место, и даем 20-30 сек постоять, чтобы жидкость немного успокоилась. Наш раствор неперенасыщенный, поэтому “лишние градусы” могут вызвать растворение затравки, что нам не нужно. Если раствор тёплый, ему дают остыть до 300C или чуть меньше (проверить при отсутствии термометра – легко; температура нашего тела 36,60C, поэтому всё, что кажется теплее – выше её, наоборот - ниже). Следить за остыванием раствора следует очень внимательно, чтобы не допустить её понижения до комнатной (обычно на остывание раствора выделяю около двух часов).

Далее следует сказать, что можно вырастить кристалл и без нити. Всё, что для этого требуется – стакан с плоским дном, так как для этой цели затравку аккуратно укладывают на середину дна (можно помочь ей лечь нагретой стеклянной палочкой), и она повторит его рельеф. Здесь рост кристалла будет ограничен стенками стакана, и преимущественно, он будет расти в стороны – это хорошо для медного купороса и для плоских кристаллов в принципе (жёлтая кровяная соль, гидрофталат калия).

В случае с квасцами лучше использовать нить, которой обматываем затравку, а остальную часть нити закрепляем на каркасе из двух пересечённых палочек. Кристалл при этом должен “висеть” в растворе в центре. Но здесь требуется следить за тем, чтобы не обрастала нить. Если такое произошло, то нить с кристаллом вынимаем, счищаем лишнее и заново готовим раствор* (греют, подготавливают к температуре кристалл и т. п.) Надо помните: чтобы не было наростов на нити, нить должна быть тонкой без волосков, и должна быть опущена с затравкой в раствор на 5о теплее, чем для простой затравки. Такая нить успевает пропитаться раствором и “сливается” с системой в единое целое.

Теперь следует следить за ростом кристалла каждый день, ни в коем случае не сотрясая раствор, иначе эта встряска породит в системе мгновенную кристаллизацию. Так многие авторы советую доливать раствор в систему по мере его испарения. Это очень сложная операция, поскольку возникшая сильная диффузия также может вызвать сбои в росте кристалла. Вначале мы увидим, как система будет “обживать” затравку, как они будут подстраиваться друг под друга. В итоге должно получиться следующее:

Рис.13 кристаллы меди Рис. 14 кристаллы квасцов

Полученные кристаллы медного купороса (рис.11) и алюмокалиевых квасцов (рис. 12), за одну неделю выращивания.

Наши результаты:

https://pandia.ru/text/78/007/images/image018_21.jpg" width="257" height="179 src=">

Рис. 15 Рис. 16

Выращенные нами кристаллы медного купороса (рис. 15) и алюмокалиевых квасцов (рис. 16), за одну неделю выращивания.

Вывод:

Мы научились выращивать кристаллы и узнали, что этим способом можно выращивать кристаллы любых других простых веществ, а также, что необходимо для выращивания и как происходит рост кристаллов.

Мы хотим дать советы тем, кто заинтересовался этой работой и хочет вырастить кристалл самостоятельно в домашних условиях.

Наши советы:

Ø Для выращивания кристаллов используют только свежеприготовленные растворы.

Ø Чтобы кристаллы росли как можно правильно, а у бесцветного вещества они были прозрачными, кристаллизация должна идти медленно, иначе кристалл мутнеет.

Ø Чем меньше выбранная вами затравка, чем она правильнее, тем легче раствору (системе) подстроиться под неё.

Заключение.

Итак, в данной работе была рассказана лишь малая часть того, что известно о кристаллах в настоящее время, однако и эта информация показала, насколько неординарны и загадочны кристаллы по своей сущности.
В облаках, в глубинах Земли, на вершинах гор, в песчаных пустынях, в морях и океанах, в научных лабораториях, в клеточках растений, в живых и мертвых организмах везде встретим мы кристаллы. Но может кристаллизация вещества совершается только на нашей планете? Нет, мы знаем теперь, что и на других планетах и далеких звездах все время непрерывно возникают, растут и разрушаются кристаллы. Метеориты, космические посланцы, тоже состоят из кристаллов, причем иногда в их состав входят кристаллические вещества, на Земле не встречающиеся. Кристаллы везде.
Люди привыкли использовать кристаллы, делать из них украшения, любоваться ими. Теперь, когда изучены методы искусственного выращивания кристаллов, область их применение расширилась, и, возможно, будущее новейших технологий принадлежит кристаллам и кристаллическим агрегатам.

Список литературы.

1. ; «Занимательные опыты по химии», 1995 г.

2. Алферова «Большой справочник по химии для школьников»,2002

3. «Энциклопедия драгоценных камней и кристаллов», 2008

4. «Кристаллы. Их роль в природе и науке.», 1970

5. «Сила кристаллов»,2003

6. «Физика твёрдого тела», 2008

7. Довбни «Мир кристаллов», 2006

8. «Камень, рождающий металл», 1984г.;

9. «Минерал рассказывает о себе», 1985 г.;

10. «Физика. Справочные материалы», 1991г.

11. «Физический практикум.» , 2002.

12. Петров « Выращивание кристаллов из растворов», 2000

13. «Школьникам о современной физике», М.; 1990г.

14. «Замечательные минералы», 1983г

15. Сухарёва «Удивительный мир кристаллов», 2007

16. Холл Джуди «Путеводитель по миру кристаллов. Иллюстрированный справочник», 2007

17. , «Основы кристаллографии», 2006

18. «Кристаллография. Лабораторный практикум», 2005

19. ; "Кристаллы", 1985 г.;

Натуральные кристаллы... Их еще называют красивыми, редко встречающимися камнями или твердыми телами. Мы представляем себе камень кристалл в виде крупного, яркого, прозрачного или бесцветного многогранника, имеющего идеальные блестящие грани. В жизни нам чаще встречаются такие твердые вещества в виде зернышек неправильной формы, песчинок, обломков. Но свойства у них такие же, как и у совершенных крупных кристаллов. Окунитесь вместе с нами в волшебный мир натуральных камней кристаллов, познакомьтесь с их строением, формами, видами. Что ж, в путь...

Таинство кристаллов

Мир кристаллов - прекрасный и таинственный. Разноцветные камушки еще с детства манят и притягивают нас своей красотой. Их загадочность мы чувствуем на интуитивном уровне и любуемся их естественной природной красотой. Людям всегда хотелось узнать как можно больше о натуральных твердых веществах, о свойствах кристаллов, становлении их форм, росте и структуре.

Мир этих камней такой необычный, что хочется заглянуть к ним внутрь. Что же увидим мы там? Перед глазами откроется картина бесконечно тянущихся, строго упорядоченных рядов атомов, молекул и ионов. Все они строго подчиняются законам, правящим в мире камней кристаллов.

Кристаллические вещества распространены в природе очень широко, ведь все горные породы состоят из них. А из горных пород состоит вся земная кора. Оказывается, эти необычные вещества можно даже вырастить дома самому. Важно отметить, что "кристалл" на древнегреческом языке обозначал "лед" или "горный хрусталь".

Что собой представляет камень кристалл?

Что говорят школьные учебники о кристаллах? В них говорится, что это твердые тела, которые образуются под влиянием природных или лабораторных условий и имеют вид многогранников. Геометрическое строение данных тел непогрешимо строгое. Поверхность кристаллических фигур составляют совершенные плоскости - грани, которые пересекаются по прямым линиям, которые называется ребрами. В точках пересечения ребер возникают вершины.

Твердое состояние вещества и есть кристалл. У него существует определенная форма, конкретное количество граней, зависящее от расположения атомов. Итак, твердые тела, в которых молекулы, атомы, ионы располагаются в строгой закономерности в виде узлов пространственных решеток.

Мы чаще всего ассоциируем кристаллы с редкими и красивыми драгоценными камнями. И это не зря, алмазы тоже являются кристаллами. Но не все твердые тела отличаются редкостью и красотой. Ведь частички соли и сахара - тоже кристаллики. Вокруг нас сотни веществ в виде них. Одним из этих тел считается замерзшая вода (лед или снежинки).

Образование различных форм кристаллов

В природе минералы образуются в результате породообразующих процессов. Растворы минералов в виде горячих и расплавленных пород лежат глубоко под землей. При выталкивании этих раскаленных пород на поверхность земли происходит их остывание. Охлаждаются вещества очень медленно. Из минералов образуются кристаллы в форме твердых тел. Например, в граните присутствуют минералы кварца, полевого шпата и слюды.

В каждом кристаллике находится миллион отдельных элементов (монокристаллов). Ячейку кристаллической решетки можно представить в виде квадрата с атомами по углам. Это могут быть атомы кислорода или других элементов. Известно, что кристаллы могут реагировать на различные энергии, запоминать отношение к ним людей. Вот почему их используют для исцеления и очищения. Кристаллы могут быть всевозможных форм. В зависимости от этого их делят на 6 больших видов.

Разные типы и виды природных твердых тел

Размеры кристаллов тоже могут быть разными. Все твердые тела делят на идеальные и реальные. К идеальным относятся тела с гладкими гранями, строгим дальним порядком, определенной симметрией кристаллической решетки и прочими параметрами. К реальным кристаллам зачисляют те, которые встречаются в реальной жизни. В них могут быть примеси, понижающие симметрию кристаллической решетки, гладкость граней, оптические свойства. Оба вида камней объединяет правило расположения атомов в вышеописанной решетке.

Еще по одному критерию деления их распределяют на природные и искусственные. Для роста природных кристаллов нужны естественные условия. Искусственные твердые тела выращиваются в лабораторных или домашних условиях.

По эстетико-экономическому критерию их делят на драгоценные и недрагоценные камни. Драгоценные минералы обладают редкостью и красотой. К ним относятся изумруд, алмаз, аметист, рубин, сапфир и другие.

Строение и формы скоплений твердых веществ

Одновершинные кристаллы относятся к шестигранным камням с пирамидальной вершиной. Основание таких генераторных минералов более широкое. Встречаются кристаллы с двумя вершинами - Инь и Ян. Их используют в медитации для равновесия материального и духовного начал.

Минералы, у которых 2 из 6 граней сбоку шире всех остальных, называются пластинчатыми. Они применяются для телепатического исцеления.

Образованные в результате ударов или трещин кристаллы, раскладывающиеся после этого на 7 оттенков, называются радужными. Они снимают депрессию и разочарование.

Минералы с различными включениями других элементов называются кристаллами-призраками. Сначала они перестают расти, потом на них оседают другие материалы, а затем опять возобновляется рост вокруг них. Таким образом, заметны контуры минерала, который прекратил рост, поэтому он кажется призрачным. Такие кристаллы используют для привлечения урожая на садовых участках.

Необычные друзы

Очень красивым зрелищем являются друзы. Это собрание множества кристаллов на одном основании. Они имеют положительную и отрицательную полярность. С их помощью очищается воздух и перезаряжается атмосфера. В природе встречаются друзы кварца, изумруда, топаза. Человеку они несут спокойствие и гармонию.

Друзами еще называют сросшиеся кристаллы. Чаще всего такому явлению подвержены гранаты, пириты, флюориты. Они часто выставляются в виде экспонатов музеев.

Мелкие сросшиеся кристаллики называют щеткой, большие минералы именуют цветком. Очень красивой разновидностью друз являются жеоды. Они растут на стенках. Друзы могут быть совсем маленькими и большими. Это очень ценные находки. Высоко ценятся друзы агата, селенита, аметиста, цитрина, мориона.

Как кристаллы хранят информацию и знания?

Ученые установили, что на гранях кристаллов находятся треугольнички, указывающие на наличие в них знаний. Эти сведения может получить только определенный человек. Если такой человек появится, то камни отдадут ему свое истинное нутро.

Кристаллы способны передавать вибрации, пробуждать высшие силы сознания, уравновешивать душевные силы. Поэтому их часто используют в медитациях. Предыдущие цивилизации хранили информацию именно в камнях. Например, горный хрусталь считали драгоценным камнем богов. Кристаллы почитали, как живых существ. Даже у "космоса" первоначальным значением было "драгоценный камень".

Драгоценные камни

Важно отметить, что в необработанной форме - не такие уж красивые. Их еще называют камнями или минералами. Драгоценными они называются, потому что очень красивы в огранке и используются в ювелирном деле. Многим знакомы драгоценные камни аметисты, бриллианты, сапфиры, рубины.

Самым твердым камнем считается алмаз. Хрупкий кристалл травянисто-зеленого цвета - изумруд. Разновидностью минерала корунда красного цвета является рубин. Месторождения этого кристалла существуют почти на всех континентах. Что считается неоспоримым его идеалом? Бирманские рубины. Месторождения рубинов в РФ находятся в Челябинской и Свердловской областях.

Какие еще есть дорогостоящие минералы? Прозрачными драгоценными кристаллами различной окраски - от бледно-голубой до темно-синей - являются сапфиры. Это хоть и редкий минерал, но ценится ниже рубина.

Дорогой разновидностью кварца является прекрасный драгоценный камень аметист. Когда-то он был вставлен первосвященником Аароном в число 12 камней его пекторали. Аметисты имеет красивый фиолетовый или лиловый отлив.

Российские алмазы

Итак, самый твердый кристалл - алмаз - добывают из кимберлитовых трубок, образовавшихся в результате извержений подземных вулканов. Кристаллическая решетка этого камня образуется под воздействием высокой температуры и высокого давления углерода.

Добыча алмазов в России началась в Якутии только в середине прошлого века. Сегодня РФ уже находится в лидерах по добыче этих драгоценных камней. Ежегодно на добычу алмазов в России выделяются миллиарды рублей. Стоит отметить, что на тонну кимберлитовых трубок приходится несколько карат алмазов.



Похожие статьи
  • Сколько калорий в пирожке с капустой

    Все мы любим пирожки. У многих пирожки – это воспоминания о детстве, о субботнем утре, о деревне; бабушкины пирожки для многих всегда останутся самыми вкусными и ароматными. И нередко на диете бывает легче перенести отсутствие десерта, чем запрет...

    Насосные станции
  • Афанасий фет В каком веке родился фет

    Родился в семье помещика Афанасия Неофитовича Шеншина и матери, которая ушла к нему от мужа Иоганна-Петера Фета. После четырнадцати лет орловской духовной консисторией Афанасию была возвращена фамилия предыдущего мужа матери, из-за чего он терял...

    Нормы и правила
  • Сонник: к чему снится Ругаться

    Ругаться по соннику эзотерика Е.Цветкова Ругаться – Браниться с кем-то – досада; слышать ругань – официальная церемония; с женой, мужем – см. Жена, муж.Ругаться – Досада. Сонник Странника (Терентия Смирнова) Толкование Ругались из вашего сна...

    Проектирование