Импульсный излучатель. Как сделать магнитострикционный излучатель своими руками: описание, схема и рекомендации Устройства создающие мощный электромагнитный импульс своими руками

10.08.2023

Из курса штатской обороны знаменито, что электромагнитный импульс появляется при ядерном взрыве и вызывает громадные уничтожения. Впрочем, разумеется, не каждый такой импульс столь опасен. При желании его дозволено сделать вовсе маломощным, подобно тому, как искра в пьезозажигалке является крохотной точной копией громадной молнии.

Инструкция

1. Возьмите непотребный карманный пленочный фотоаппарат со вспышкой. Вытянете из него батарейки. Наденьте резиновые перчатки и разберите агрегат.

2. Разрядите накопительный конденсатор вспышки. Для этого возьмите резистор сопротивлением около 1 кОм и мощностью 0,5 Вт, согните его итоги, зажмите его в маленьких плоскогубцах с изолированными ручками, позже чего, удерживая резистор только при помощи плоскогубцев, замкните им конденсатор на несколько десятков секунд.Позже этого окончательно разрядите конденсатор, замкнув его лезвием отвертки с изолированной ручкой еще на несколько десятков секунд.

3. Измерьте напряжение на конденсаторе – оно не должно превышать нескольких вольт. При необходимости, разрядите конденсатор вторично.Напаяйте на итоги конденсатора перемычку.

4. Сейчас разрядите конденсатор в цепи синхроконтакта. Он имеет малую емкость, следственно для его разряда довольно кратковременно замкнуть синхроконтакт. Удерживаете при этом руки подальше от лампы-вспышки, от того что при срабатывании синхроконтакта на нее со особого повышающего трансформатора поступает импульс высокого напряжения.

5. Возьмите полый диэлектрический каркас диаметром в несколько миллиметров. Намотайте на него несколько сотен витков изолированного провода диаметром около миллиметра. Поверх обмотки намотайте несколько слоев изоляционной ленты.

6. Катушку включите ступенчато с накопительным конденсатором вспышки.Если у фотоаппарата нет кнопки проверки вспышки, подключите параллельно синхроконтакту кнопку с отменной изоляцией, скажем, звонковую.

7. Сделайте в корпусе агрегата небольшие выемки для итога проводов от кнопки и катушки. Они необходимы для того, дабы при сборке корпуса эти провода не оказались пережатыми, что пугает их обрывом. Снимите перемычку с накопительного конденсатора вспышки. Соберите агрегат, позже чего снимите резиновые перчатки.

8. Вставьте в агрегат батарейки. Включите его, отвернув вспышку от себя, дождитесь зарядки конденсатора, позже чего вставьте в катушку лезвие отвертки. Удерживая отвертку за ручку, дабы она не вылетела, нажмите кнопку. Единовременно со вспышкой возникнет электромагнитный импульс , тот, что намагнитит отвертку.

9. Если отвертка намагнитилась неудовлетворительно отменно, дозволено повторить операцию еще несколько раз. По мере применения отвертки она будет помаленьку терять намагниченность. Волноваться по этому поводу не стоит – чай сейчас у вас есть прибор, которым ее дозволено неизменно восстановить.Учтите, что намагниченные отвертки нравятся не каждом домашним мастерам. Одни считают их дюже комфортными, другие – напротив, дюже неудобными.

Скептически настроенные люди при результате на вопрос о действиях при ядреном взрыве скажут, что необходимо обернуть себя простыней, выйти на улицу и строиться в шеренги. дабы принять гибель, какая она есть. Но экспертами разработан ряд рекомендаций, которые помогут выжить при ядерном взрыве.

Инструкция

1. При приобретении информации о допустимом ядерном взрыве в местности, где вы находитесь, нужно по вероятности спуститься в подземное убежище (бомбоубежище) и не выходить, пока не получите других инструкций. Если такая вероятность отсутствует, вы находитесь на улице и нет вероятности попасть в помещение, укройтесь за любым предметом, тот, что может представлять охрану, в крайнем случае, лягте плашмя на землю и закройте голову руками.

2. Если вы настоль близко находитесь от эпицентра взрыва, что видна сама вспышка, помните, что вам нужно укрытся от радиоктивных осадков, которые появятся в таком случае в течение 20 минут, все зависит от отдаленности от эпицентра. Значимо помнить, что радиактивные частицы разносятся ветром на сотни километров.

3. Не покидайте своего укрытия без официального заявления властей о том, что это неопасно. Постарайтесь сделать свое нахождение в укрытие максимально удобным, поддерживайте должные санитарные данные, воду и пищу используйте экономно, побольше еды и питья дозволено двавать детям, больным и престарелым людям. По вероятности осуществляйте подмога руководящим бомбоубежища, чай нахождение в ограниченном пространстве большого числа людей может оказаться малоприятным, а продолжительность такого вынужденного сожительстваможет варьироваться от одного дня до месяца.

4. При возвращении в жилище главно помнить и исполнять несколько правил. Перед тем, как войти в дом, удостоверитесь в его целостности, наличии повреждений, отсутствии частичного обрушения конструкций. При входе в квартиру в первую очередь уберите все легковоспламеняющиеся жидкости, медикаменты и всякие другие допустимо небезопасные вещества. Воду, газ и электричество дозволено включить лишь в том случае, когда у вас будет точное доказательство того, что все системы работают в штатном режиме.

5. При передвижении по местности не подходите к поврежденным взрывом территориям и к зонам, помеченным знаками «небезопасные материалы» и «угроза радиации».

Обратите внимание!
Неоценимую подмога вам окажет присутствие при себе радио для прослушивания официальных сообщений местных властей. Неизменно следуйте полученным, потому что власти неизменно располагают большей инфорацией, чем окружающие.

Электромагнитный толчок малой мощности не горазд вызвать гигантских уничтожений, снося все на своем пути, как скажем, тот, тот, что получается в итоге ядерного взрыва. Сформировать маломощный толчок дозволено в домашних условиях.

Инструкция

1. Для начала раздобудьте непотребный вам в будущем пленочный фотоаппарат, желанно, имеющий вспышку.

2. Наденьте перчатки и приступайте к процессу разряжения накопительного конденсатора вспышки. При помощи плоскогубцев с изоляцией возьмите резистор на 0,5 Вт с сопротивлением приблизительно 1 кОм и замкните при помощи него конденсатор на 30-40 секунд. После этого замкните конденсатор при помощи отвертки с изоляцией еще на полминуты, дабы он окончательно разрядился.

3. Проследите, дабы напряжение в конденсаторе было не больше нескольких вольт. Если потребуется, разрядите его еще раз. На итоги конденсатора сделайте перемычку.

4. Сейчас займитесь разряжением конденсатора в цепи малой емкости – синхроконтакте. Для этого намотайте на диэлектрическую катушку диаметром 5-6 мм около 200 витков изолированного миллиметрового провода. Сверху покройте обмотку изолентой.

5. Подсоедините каркас с обмоткой ступенчато с накопительным конденсатором вспышки. В том случае, если ваш фотоаппарат не имеет кнопку проверки вспышки, то дозволено подключить параллельно синхроконтакту звонковую кнопку.

6. В корпусе фотоаппарата проделайте отверстия для того, дабы вывести провода от кнопки и каркаса с обмоткой. Отверстия дозволят избежать пережатия и обрыва столь значимых проводов. Сейчас можете убрать перемычку с накопительного конденсатора вспышки и собрать агрегат.

7. Снимите перчатки и поставьте в фотоаппарат батарейки. Испробуйте его включить, при этом отворачивая вспышкой в сторону. Немножко подождите, пока конденсатор зарядится, и вставьте в каркас с обмоткой отвертку с изолированной ручкой.

8. Осмотрительно, придерживая отвертку, дабы она не отлетела в сторону, нажмите на кнопку. У вас должен образоваться электромагнитный толчок, намагничивающий отвертку, в момент вспышки.

Видео по теме

Обратите внимание!
Будьте осмотрительны при работе с всякими высоковольтными приборами.

С малых дистанций. Естественно я сразу же захотел сделать подобную самоделку, поскольку она довольно эффектная и на практике показывает работу электромагнитных импульсов. В первых моделях ЭМИ излучателя стояли несколько высоко ёмкостных конденсаторов из одноразовых фотоаппаратов, но данная конструкция работает не очень хорошо, из-за долгой "перезарядки". Поэтому я решил взять китайский высоковольтный модуль (который обычно используется в электрошокерах) и добавить к нему "пробойник". Данная конструкция меня устраивала. Но к сожалению у меня сгорел высоковольтный модуль и поэтому я не смог отснять статью по данной самоделке, но у меня было отснято подробное видео по сборке, поэтому я решил взять некоторые моменты из видео, надеюсь Админ будет не против, поскольку самоделка реально очень интересная.

Хотелось бы сказать что всё это было сделано в качестве эксперимента!

И так для ЭМИ излучателя нам понадобится:
-высоковольтный модуль
-две батарейки на 1,5 вольта
-бокс для батареек
-корпус, я использую пластиковую бутылку на 0,5
-медная проволока диаметром 0,5-1,5 мм
-кнопка без фиксатора
-провода

Из инструментов нам понадобится:
-паяльник
-термо клей

И так первым делом нужно намотать на верхнюю часть бутылки толстую проволоку примерно 10-15 витков, виток к витку (катушка очень сильно влияет на дальность электромагнитного импульса, лучше всего показала себя спиральная катушка диаметром 4,5 см) затем отрезаем дно бутылки




Берём наш высоковольтный модуль и припаиваем обязательно к входным проводам питание через кнопку, предварительно вынув батарейки из бокса




Берём трубочку от ручки и отрезаем от неё кусочек длиной 2 см:




Один из выходных проводов высоковольтника вставляем в отрезок трубочки и приклеиваем так как показано на фото:


С помощью паяльника проделываем отверстие с боку бутылки, чуть больше диаметра толстой проволоки:


Самый длинный провод вставляем через отверстие внутрь бутылки:


Припаиваем к нему оставшийся провод высоковольтника:


Располагаем высоковольтный модуль внутри бутылки:


Проделываем ещё одно отверстие с боку бутылки, диаметром чуть больше диаметра трубочки от ручки:


Вытаскиваем отрезок трубочки с проводом через отверстие и крепко приклеиваем и изолируем термо клеем:




Затем берём второй провод от катушки и вставляем его внутрь куска трубочки, между ними должен остаться воздушный зазор, 1,5-2 см, подбирать нужно экспериментальным путём




укладываем всю электронику внутрь бутылки, так чтобы ни чего не замыкало, не болталось и было хорошо заизолировано, затем приклеиваем:




Делаем ещё одно отверстие по диаметру кнопки и вытаскиваем её изнутри, затем приклеиваем:




Берём отрезанное дно, и обрезаем его по краю, так чтобы оно смогло налезть на бутылку, надеваем и приклеиваем:






Ну вот и всё! Наш ЭМИ излучатель готов, осталось только его протестировать! Для этого берём старый калькулятор, убираем ценную электронику и желательно одеваем резиновые перчатки, затем нажимаем на кнопку и подносим калькулятор, в трубочке начнёт происходить пробои электрического тока, катушка начнёт испускать электромагнитный импульс и наш калькулятор сначала сам включится, а потом начнёт рандомно сам писать числа!

До этой самоделки я делал ЭМИ на базе перчатки, но к сожалению отснял только видео испытаний, кстати с этой перчаткой я ездил на выставку и занял второе место из-за того что плохо показал презентацию. Максимальная дальность ЭМИ перчатки составляла 20 см. Надеюсь эта статья была вам интересна, и будьте осторожны с высоким напряжением!

Для генерации ультразвука применяются специальные излучатели магнитострикционного типа. К основным параметрам устройств относится сопротивление и проводимость. Также учитывается допустимая величина частоты. По конструкции устройства могут отличаться. Также надо отметить, что модели активно применяются в эхолотах. Чтобы разобраться в излучателях, важно рассмотреть их схему.

Схема устройства

Стандартный магнитострикционный излучатель ультразвука состоит из подставки и набора клемм. Непосредственно магнит подводится на конденсатор. В верхней части устройства имеется обмотка. У основания излучателей часто устанавливается зажимное кольцо. Магнит подходит только неодимового типа. В верхней части моделей располагается стержень. Для его фиксации применяется кольцо.

Кольцевая модификация

Кольцевые устройства работают при проводимости от 4 мк. Многие модели производятся с короткими подставками. Также надо отметить, что существуют модификации на полевых конденсаторах. Чтобы собрать магнитострикционный излучатель своими руками, применяется обмотка соленоида. При этом клеммы важно устанавливать низкого порогового напряжения. Ферритовый стрежень целесообразнее подбирать небольшого диаметра. Зажимное кольцо ставится в последнюю очередь.

Устройство с яром

Сделать магнитострикционный излучатель своими руками довольно просто. В первую очередь заготавливается стойка под стержень. Далее важно вырезать подставку. Для этого можно использовать металлический диск. Специалисты говорят о том, что подставка в диаметре должна быть не более 3.5 см. Клеммы для устройства подбираются на 20 В. В верхней части модели фиксируется кольцо. При необходимости можно намотать изоленту. Показатель сопротивления у излучателей данного типа находится в районе 30 Ом. Работают они при проводимости не менее 5 мк. Обмотка в данном случае не потребуется.

Модель с двойной обмоткой

Устройства с двойной обмоткой производятся разного диаметра. Проводимость у моделей находится на отметке 4 мк. Большинство устройств обладает высоким волновым сопротивлением. Чтобы сделать магнитострикционный излучатель своими руками, используется только стальная подставка. Изолятор в данном случае не потребуется. Ферритовый стержень разрешается устанавливать на подкладку. Специалисты рекомендуют заранее заготовить уплотнительное кольцо. Также надо отметить, что для сборки излучателя потребуется конденсатор полевого типа. Сопротивление на входе у модели должно составлять не более 20 Ом. Обмотки устанавливаются рядом со стержнем.

Излучатели на базе отражателя

Излучатели данного типа выделяются высокой проводимостью. Работают модели при напряжении 35 В. Многие устройства оснащаются полевыми конденсаторами. Сделать магнитострикционный излучатель своими руками довольно проблематично. В первую очередь надо подобрать стержень небольшого диаметра. При этом клеммы заготавливаются с проводимостью от 4 мк.

Волновое сопротивление в устройстве должно составлять от 45 Ом. Пластина устанавливается на подставке. Обмотка в данном случае не должна соприкасаться с клеммами. В нижней части устройства обязана находиться круглая подставка. Для фиксации кольца часто применяется обычная изолента. Конденсатор напаивается над манганитом. Также надо отметить, что кольца иногда применяются с накладками.

Устройства для эхолотов

Для эхолотов часто используется магнитострикционный излучатель УЗ. Как приготовить модель своими руками? Самодельные модификации производятся с проводимостью от 5 мк. у них в среднем равняется 55 Ом. Чтобы изготовить мощный ультразвуковой стержень применяется на 1.5 см. Обмотка соленоида накручивается с малым шагом.

Специалисты говорят о том, что стойки под излучатели целесообразнее подбирать из нержавейки. При этом клеммы применяются с малой проводимостью. Конденсаторы подходят разного типа. у излучателей находится на отметке 14 Вт. Для фиксации стержня используются резиновые кольца. У основания устройства накручивается изолента. Также стоит отметить, что магнит надо устанавливать в последнюю очередь.

Модификации для рыболокаторов

Устройства для рыболокаторов собираются только с проводными конденсаторами. Для начала требуется установить стойку. Целесообразнее применять кольца диаметром от 4.5 см. Обмотка соленоида обязана плотно прилегать к стержню. Довольно часто конденсаторы припаиваются у основания излучателей. Некоторые модификации производятся на две клеммы. Ферритовый стрежень обязан фиксироваться на изоляторе. Для укрепления кольца используется изолента.

Модели низкого волнового сопротивления

Устройства низкого волнового сопротивления работают при напряжении 12 В. У многих моделей имеются два конденсатора. Чтобы собрать прибор, генерирующий ультразвук, своими руками, потребуется стержень на 10 см. При этом конденсаторы на излучатель устанавливаются проводного типа. Обмотка накручивается в последнюю очередь. Также надо отметить, что для сборки модификации потребуется клемма. В некоторых случаях используются полевые конденсаторы на 4 мк. Параметр частоты будет довольно высокий. Магнит целесообразнее устанавливаться над клеммой.

Устройства высокого волнового сопротивления

Излучатели ультразвука высокого сопротивления хорошо подходят для приемников короткой волны. Собрать самостоятельно устройство можно только на базе переходных конденсаторов. При этом клеммы побираются высокой проводимости. Довольно часто магнит устанавливается на стойке.

Подставка для излучателя применяется малой высоты. Также надо отметить, что для сборки устройства используются один стрежень. Для изоляции его основания подойдет обычная изолента. В верней части излучателя обязано находиться кольцо.

Стержневые устройства

Схема стержневого типа включает в себя проводник с обмоткой. Конденсаторы разрешается применять разной емкости. При этом они могут отличаться по проводимости. Если рассматривать простую модель, то подставка заготавливается круглой формы, а клеммы устанавливаются на 10 В. Обмотка соленоида накручивается в последнюю очередь. Также надо отметить, что магнит подбирается неодимового типа.

Непосредственно стержень применяется на 2.2 см. Клеммы можно устанавливать на подкладке. Также надо упомянуть о том, что существуют модификации на 12 В. Если рассматривать устройства с полевыми конденсаторами высокой емкости, то минимальный диаметр стержня допускается 2.5 см. При этом обмотка должна накручиваться до изоляции. В верхней части излучателя устанавливается защитное кольцо. Подставки разрешается делать без накладки.

Модели с однопереходными конденсаторами

Излучатели данного типа выдают проводимость на уровне 5 мк. При этом показатель волнового сопротивления у них максимум доходит до 45 Ом. Для того чтобы самостоятельно изготовить излучатель, заготавливается небольшая стойка. В верхней части подставки обязана находиться накладка из резины. Также надо отметить, что магнит заготавливается неодимового типа.

Специалисты советуют устанавливать его на клей. Клеммы для устройства подбираются на 20 Вт. Непосредственно конденсатор устанавливается над накладкой. Стержень используется диаметром в 3.3 см. В нижней части обмотки должно находиться кольцо. Если рассматривать модели на два конденсатора, то стержень разрешается использовать с диаметром 3.5 см. Обмотка должна накручиваться до самого основания излучателя. В нижней части стоки клеится изолента. Магнит устанавливается в середине стойки. Клеммы при этом должны находиться по сторонам.

СВЧ-пушка - мощный аппарат, способный направленно излучать СВЧ-волны. Его можно сделать своими руками из микроволновки. Он требует максимальной осторожности как при создании, так и при использовании. Далее мы перечислим,зачем нужен этот самодельный прибор.

Как использовать направленный СВЧ-излучатель

Мощная СВЧ-пушка может быть использована в таких целях:

  • Уничтожение жуков и прочих вредных насекомых. Микроволны превращают молекулы жидкости в пар - так можно истребить жучков, грызущих деревянные постройки. Сама древесина от микроволн не страдает.
  • Плавление цветных металлов.
  • Сушка и стерилизация круп (убивает жучков и бактерии).
  • Вывод из строя подслушивающих устройств. Микроволны препятствует работе любых «шпионских» приборов.
  • Помехи для соседского телевизора, включенного на полную громкость, - можно запросто убавить звук. Следует учесть: в 10 м от пушки зависают телефоны, а в компьютерах и телевизорах происходит искажение звука. Запрещается долгое воздействие на эти устройства - они могут взорваться.
  • Зажигание ламп дневного света с большого расстояния.
  • Кипячение небольшого количества воды.

Как сделать СВЧ-пушку

Вам понадобится микроволновая печь - подойдет любая, даже сгоревшая. Пушку будем делать из магнетрона - это главный элемент любой СВЧ-печки. Он должен быть в рабочем состоянии. Для создания прибора также понадобится:

  • Емкость - например, консервная банка. Лучший вариант - корпус от громкоговорителя.
  • Проволока и прочая мелочь, которая может пригодиться при соединении деталей устройства.

Первым делом нужно извлечь магнетрон. Изначально этот элемент создавался для генерирования СВЧ электромагнитных колебаний в РЛС (радиолокационных станциях). В микроволновках установлены магнетроны, генерирующие микроволны частотой 2,45 ГГц.

Как устроен магнетрон

С виду излучатель напоминает радиатор, увенчанный штырем. Мощность излучения составляет 0,7-0,8 кВт. Если покупать магнетрон с рук, на радиорынке, он обойдется вам примерно в 800 рублей.

Принципиальная электрическая схема позволяет досконально разобраться в магнетроне, который по сути диод. Катод накаляется, из него выбиваются электроны. Анод - холодный, имеет резонаторы, усложняющие вид электрополя, образуемого в излучателе. Последний помещен между катушками с током - они создают магнитное поле, которое искривляет прямолинейный путь электронов. Без действия магнитного поля электроны стремились бы к аноду по прямой, а так путь электронов искривлен под воздействием силы Лоренца.

Необходимо обеспечить питание излучателя: например, от преобразователя с зарядным устройством из компьютерного блока бесперебойного питания.

Работать с пушкой нужно крайне осторожно: нельзя, чтобы излучение сфокусировалось на теле, особенно это опасно для глаз.

Зачем нужна антенна

Для целенаправленного действия СВЧ-пушке нужна антенна. Для этого сделайте в банке отверстие.

В банке высотой 175 мм и диаметром 75 мм проделывают сбоку дырку диаметром 20 мм, отступив от донышка на 37 мм. Магнетрон достают из корпуса печки, а провода, идущие к нему, удлиняют проволокой.

Занимаясь конструированием, будьте осторожны. СВЧ-устройство, созданное на основе магнетрона, сильно нагревается, поэтому не включайте его надолго. Следует опасаться СВЧ-излучения: его воздействие на организм до конца не изучено. Работая с излучателем, обязательно пользуйтесь средствами защиты.

Добрый день, уважаемые хабровчане.

Этот пост будет про недокументированные функции микроволновой печи. Я покажу, сколько полезных вещей можно сделать, если использовать слегка доработанную микроволновку нестандартным образом.

В микроволновке находится генератор СВЧ волн огромной мощности

Мощность волн, которые используются в микроволновке, уже давно будоражит моё сознание. Её магнетрон (генератор СВЧ) выдаёт электромагнитные волны мощностью около 800 Вт и частотой 2450 МГц. Только представьте, одна микроволновка вырабатывает столько излучения, как 10 000 wi-fi роутеров, 5 000 мобильных телефонов или 30 базовых вышек мобильной связи! Для того, что бы эта мощь не вырвалась наружу в микроволновке используется двойной защитный экран из стали.

Вскрываю корпус

Сразу хочу предупредить, электромагнитное излучение СВЧ диапазона может нанести вред вашему здоровью, а высокое напряжение вызвать летальный исход. Но меня это не остановит.
Сняв крышку с микроволновки, можно увидеть большой трансформатор: МОТ . Он повышает напряжение сети с 220 вольт до 2000 вольт, что бы питать магнетрон .

В этом видеоролике я хочу показать, на что способно такое напряжение:

Антенна для магнетрона

Сняв магнетрон с микроволновки я понял, что включать просто так его нельзя. Излучение распространится от него во все стороны, поражая всё вокруг. Не долго думая я решил смастерить направленную антенну из кофейной банки. Вот схема:

Теперь всё излучение направленно в нужную сторону. На всякий случай я решил проверить эффективность этой антенны. Взял много маленьких неоновых лампочек и выложил их на плоскости. Когда я поднёс антенну с включенным магнетроном, то увидел, что лампочки загораются как раз там где нужно:

Необычные опыты

Сразу хочу отметить, СВЧ значительно сильнее влияет на технику, чем на людей и животных. Даже в 10 метрах от магнетрона, техника давала сильные сбои: телевизор и муз-центр издавали страшный рычащий звук, мобильный телефон вначале терял сеть, а потом и вовсе завис. Особо сильное влияние магнетрон оказывал на wi-fi. Когда я поднёс магнетрон близко к музыкальному центру, с него посыпались искры и к моему удивлению он взорвался! При детальном осмотре обнаружил, что в нём взорвался сетевой конденсатор. В этом видео я показываю процесс сборки антенны и влияние магнетрона на технику:

Используя не ионизирующее излучение магнетрона можно получить плазму. В лампе накаливания, поднесённой к магнетрону, зажигается ярко светящийся желтый шар, иногда с фиолетовым оттенком, как шаровая молния. Если вовремя не выключить магнетрон, то лампочка взорвётся. Даже обычная скрепка, под воздействием СВЧ превращается в антенну. На ней наводится ЭДС достаточной силы, что бы зажечь дугу и расплавить эту скрепку. Лампы дневного света и «экономки» зажигаются на достаточно большом расстоянии и светятся прямо в руках без проводов! А в неоновой лампе электромагнитные волны становятся видимыми:

Хочу вас успокоить, мои читатели, ни кто из моих соседей не пострадал от моих опытов. Все ближайшие соседи сбежали из города, как только в Луганске начались боевые действия.

Техника безопасности

Я настоятельно не рекомендую повторять описанные мною опыты потому, что при работе с СВЧ требуется соблюдать особые меры предосторожности. Все опыты выполнены исключительно с научной и ознакомительной целью. Вред СВЧ излучения для человека ещё не до конца изучен. Когда я близко подходил к рабочему магнетрону я чувствовал тепло, как от духовки. Только изнутри и как бы точечно, волнами. Больше ни какого вреда я не ощутил. Но всё же настоятельно не рекомендую направлять рабочий магнетрон на людей. Из-за термического воздействия может свернуться белок в глазах и образоваться тромб в крови. Так же ведутся споры о том, что такое излучение может вызвать онкологические и хронические заболевания.

Необычные применения магнетрона

1 - Выжигатель вредителей. СВЧ волны эффективно убивают вредителей, и в деревянных постройках, и на лужайке для загара. У жучков под твёрдым панцирем есть влагосодержащее нутро (какая мерзость!). Волны его в миг превращают в пар, при этом не причиняя вреда дереву. Я пробовал убивать вредителей на живом дереве (тлю, плодожорок), тоже эффективно, но важно не передержать потому, что дерево тоже нагревается, но не так сильно.
2 - Плавка металла. Мощности магнетрона вполне хватает для плавки цветных металлов. Только нужно использовать хорошую термоизоляцию.
3 - Сушка. Можно сушить крупы, зерно и т. п. Преимущество этого метода в стерилизации, убиваются вредители и бактерии.
4 - Зачистка от прослушки. Если обработать магнетроном комнату, то можно убить в ней всю нежелательную электронику: скрытые видеокамеры, электронные жучки, радиомикрофоны, GPS слежение, скрытые чипы и тому подобное.
5 - Глушилка. С помощью магнетрона легко можно успокоить даже самого шумного соседа! СВЧ пробивает до двух стен и «успокаивает» любую звуковую технику.

Это далеко не все возможные применения испытанные мной. Эксперименты продолжаются и вскоре я напишу ещё более необычный пост. Всё же хочу отметить, что использовать так микроволновку опасно! Поэтому лучше так делать в случаях крайней необходимости и при соблюдении правил безопасности при работе с СВЧ.

На этом у меня всё, соблюдайте осторожность при работе с высоким напряжением и микроволнами.



Похожие статьи
  • Сколько калорий в пирожке с капустой

    Все мы любим пирожки. У многих пирожки – это воспоминания о детстве, о субботнем утре, о деревне; бабушкины пирожки для многих всегда останутся самыми вкусными и ароматными. И нередко на диете бывает легче перенести отсутствие десерта, чем запрет...

    Насосные станции
  • Афанасий фет В каком веке родился фет

    Родился в семье помещика Афанасия Неофитовича Шеншина и матери, которая ушла к нему от мужа Иоганна-Петера Фета. После четырнадцати лет орловской духовной консисторией Афанасию была возвращена фамилия предыдущего мужа матери, из-за чего он терял...

    Нормы и правила
  • Сонник: к чему снится Ругаться

    Ругаться по соннику эзотерика Е.Цветкова Ругаться – Браниться с кем-то – досада; слышать ругань – официальная церемония; с женой, мужем – см. Жена, муж.Ругаться – Досада. Сонник Странника (Терентия Смирнова) Толкование Ругались из вашего сна...

    Проектирование