Гормон регулирующий обмен углеводов в организме называется. Гормоны, регулирующие обмен белков, жиров, углеводов. Гормоны в регуляции основных параметров гомеостаза Гормональная регуляция обмена веществ

02.01.2021

24691 0

Если интегральным показателем уровня углеводного обмена в животном организме является концентрация глюкозы в крови, то аналогичным показателем интенсивности жирового обмена служит концентрация НЭЖК. В состоянии покоя она составляет в среднем 500-600 мкмоль/100 мл плазмы. Этот параметр зависит от соотношения скоростей липолиза и липосинтеза в жировой ткани и печени, с одной стороны, и потребления свободных жирных кислот в качестве источника энергии в мышцах и других тканях — с другой.

Углеводы утилизируются и мобилизуются в организме легче и равномернее, чем триглицериды. Поэтому уровень глюкозы в крови более стабилен, чем концентрация НЭЖК. Если концентрация глюкозы в крови колеблется ± 30%, то концентрация свободных жирных кислот в некоторых ситуациях (голодание, интенсивная мышечная нагрузка, сильный стресс) может возрастать до 500% (Ньюсхолм, Старт, 1973).

Столь значительное повышение уровня НЭЖК в крови объясняется тем, что скорости реакций липолиза резко превышают скорости реакций утилизации НЭЖК. И хотя НЭЖК утилизируются в некоторых тканях медленнее, чем глюкоза или другие моносахариды, они вполне доступны для окисления в фукционирующих тканях и являются поэтому в ряде физиологических ситуаций важнейшими и даже первостепенными энергетическими источниками для многих типов клеток, в частности скелетных мышц, при нехватке глюкозы.

В миокарде же НЭЖК — главные топливные продукты при любых условиях. В отличие от моносахаридов скорость потребления жирных кислот во всех тканях зависит от их концентрации в крови и не зависит от проницаемости к ним клеточных мембран (Итон, Стейнберг, 1961).

Регуляторами липолиза и липосинтеза служат в основном те же гормоны, которые принимают участие и в регуляции углеводного обмена. При этом гормоны, стимулирующие гипергликемию, являются и гиперлипацидемическими, в то время как инсулин, обладающий гипогликемическим действием, предотвращает развитие гиперлипацидемии. Кроме того, в регуляции жирового обмена у позвоночных некоторое участие принимают АКТГ, липотропин и МСГ, оказывающие гиперлипацидемическое действие (рис. 99).


Рис. 99. Мультигормональная регуляция липолиза и липосинтеза:


Инсулин — единственный гормональный стимулятор липогенеза и ингибитор липолиза. Стимуляция липосинтеза гормоном в жировой ткани, а также в печени происходит за счет усиления поглощения и утилизации глюкозы (см. выше). Торможение же липолиза происходит, пo-видимому, в результате активации инсулином фосфодиэстеразы цАМФ, снижения концентрации циклического нуклеотида, снижения скорости фосфорилирования малоактивной липазы и уменьшения концентрации активной формы фермента — липазы а (Корбин и др., 1970). Помимо этого, ингибирование липолиза в жировой ткани под действием инсулина осуществляется вследствие торможения гидролиза триглицеридов продуктами усиленного гормоном гликолиза.

Глюкагон, адреналин, СТГ (у плодов также ХСМ), глюкокортикоиды, АКТГ и родственные ему гормоны — стимуляторы липолиза в жировой ткани и печени. Глюкагон и адреналин реализуют свои гиперлипацидемические эффекты посредством активации аденилатциклазы и усиления образования цАМФ, который повышает с помощью цАМФ-зависимой ПК, превращение липазы в активированную липазу а (Роюизон и др., 1971). Видимо, аналогичным образом действуют на липолиз АКТГ, липотропин и МСГ, СТГ (или его липолитический фрагмент) и глюкокортикоиды, и также ХСМ усиливают липолиз, вероятно, стимулируя синтез белков-ферментов на уровне транскритщии и трансляции (Фэйн, Синерстейн, 1970).

Латентный период повышения уровня НЭЖК в крови под влиянием глюкагона и адреналина составляет 10-20 мин, под влиянием же СТГ и кортикостероидов — 1ч или более. Следует напомнить, что АКТГ оказывает сложный эффект на липидный обмен. Он действует на жировую ткань непосредственно и через стимуляцию продукции глюкокортикоидов корой надпочечников, являясь, кроме того, прогормоном а-МСГ и срактора, стимулирующего секрецию инсулина (Белофф-Чэйн и др., 1976). Липолитическим эфсректом обладают также Тз и Т4.

Гормональная стимуляция липолиза в адипозной ткани и печени в условиях голодания или стресса и последующая гиперлипацидемия приводят не только к повышению оксиления НЭЖК, но и к торможению утилизации углеводов в мышцах и, возможно, других тканях. Тем самым глюкоза «сохраняется» для мозга, который предпочтительно утилизирует углеводы, а не жирные кислоты. Кроме того, значительная стимуляция липолиза в жировой ткани гормонами повышает образование кетоновых тел из жирных кислот в печени. Последние же и прежде всего ацетоуксусная и оксимасляная кислоты могут служить субстратами дыхания в мозге (Хокинс и др., 1971).

Другим интегральным показателем липидного обмена являются липопротеиды (ЛП) различной плотности, транспортирующие холестерин и другие липиды от печени к другим тканям и наоборот (Браун, Голдстейн, 1977-1985). ЛП низкой плотности — атерогенные (вызывающие атеросклероз), ЛП высокой плотности — антиатерогенные. Биосинтез холестерина в печени и метаболизм различных ЛП регулируются Тз, глюкокортикоидами и половыми гормонами. При этом Т3 и эстрогены предотвращают развитие атеросклероза сосудов.

Адаптивная роль гормонов, регулирующих межуточный метаболизм, и краткие сведения о его эндокринной патологии.

Уровень секреции комплекса гормонов, регулирующих углеводный и жировой метаболизм, находится в зависимости от потребностей организма в энергетических ресурсах. При голодании, мышечной и нервной нагрузке, а также других формах стресса, когда возрастает потребность в использовании углеводов и жиров, в здоровом организме происходит повышение скорости секреции тех гормонов, которые повышают мобилизацию и перераспределение запасных форм питательных веществ и обусловливают гипергликемию и гиперлипацидемию (рис. 100).

Одновременно при этом тормозится секреция инсулина (Хуссэй, 1963; Фоа, 1964, 1972). И, наоборот, прием пиши стимулирует преимущественно секрецию инсулина, который способствует синтезу гликогена в печени и мышцах, триглицеридов в адипозной ткани и печени, а также белка в разных тканях.



Рис 100. Участие гормонов в регуляция и саморегуляции межуточного углеводного и липидного обмена:
сплошными стрелками обозначена стимуляция, прерывистыми — торможение


Сигналами, стимулирующими секрецию инсулина, являются увеличение концентраций всасываемых в кровь глюкозы, жирных кислот и аминокислот, а также усиление секреции гормонов желудочно-кишечного тракта — секретина и панкреозимина. При этом секреция гормонов «мобилизации» тормозится. Однако СТГ, присутствуя даже в небольших концентрациях в крови на стадиях приема пищи, способствует поступлению глюкозы и аминокислот в мышечную и жировую ткани, а адреналин — в мышечную ткань. В то же время невысокие концентрации инсулина при голодании и стрессе, стимулируя вхождение глюкозы в мышцы, облегчают тем самым эффекты гипергликемических гормонов на мышечную ткань.

Одним из главных сигналов, модулирующих секрецию инсулина, глюкагона, адреналина и других гормонов, участвующих в адаптивной саморегуляции межуточного обмена углеводов, является, как уже отмечалось, уровень глюкозы в крови.

Повышение концентрации глюкозы в крови стимулирует по механизму обратной связи секрецию инсулина и тормозит секрецию глюкагона и других гипергликемических гормонов (Фоа, 1964, 1972; Рэндл, Хэйлс, 1972). Показано, что эффекты глюкозы на секреторную активность а- и /5 -леток поджелудочной железы, а также хромаффинных клеток являются в значительной степени результатом прямого взаимодействия гексозы со специфическими рецепторами мембран железистых клеток.

Вместе с тем эффекты глюкозы на секрецию других гормонов реализуются на уровне гипоталамуса или/и вышележащих отделов головного мозга. Аналогично глюкозе на поджелудочную железу и мозговой слой надпочечников, но не на головной мозг, по-видимому, могут действовать и жирные кислоты, обеспечивая саморегуляцию жирового обмена. Наряду с факторами саморегуляции секреции вышеуказанных гормонов на последнюю могут оказывать влияние многие внутренние н внешние стрессорные агенты.

С глубокими нарушениями углеводного и жирового обмена у человека связана тяжелейшая эндокринная болезнь — сахарный диабет. Одним из закономерных осложнений диабета является поражение мелких и крупных сосудов, что создает предпосылки у больных к развитию атеросклероза и других сосудистых нарушений. Таким образом, диабет способствует пополнению числа лиц, страдающих сердечно-сосудистыми заболеваниями.

Предполагали, что развитие сахарного диабета первично сопряжено с абсолютной инсулиновой недостаточностью. В настоящее время считают, что в основе патогенеза диабета лежит сочетанное нарушение регулирующего действия инсулина и, возможно, ряда других гормонов на ткани, в результате чего в организме возникает абсолютная или относительная недостаточность инсулина, сочетающаяся с абсолютным или относительным избытком глюкагона или других «диабетогенных» гормонов (Унтер, 1975).

Дисбаланс действия гормонов приводит соответственно к развитию устойчивой гипергликемии (концентрация сахара в крови выше 130 мг%), глюкозурии и полиурии. Последние два симптома и дали название заболеванию — сахарное мочеизнурение, или сахарный диабет. В условиях углеводной нагрузки (тест толерантности к глюкозе) гликемическая кривая у больных изменена: после приема 50 г глюкозы внутрь гипергликемия у больных по сравнению с нормой растянута во времени и достигает больших величин.

Наряду с нарушением утилизации и депонирования углеводов при диабете возникают соответствующие расстройства жирового обмена: усиление липолиза, торможение липогенеза, увеличение содержания НЭЖК в крови, повышение окисления их в печени, накопление кетоновых тел. Повышенное образование кетоновых тел (кетоз) приводит к снижению рН крови — ацидозу, который играет существенную роль в развитии заболевания (Ренолд и др., 1961).

Кетоацидозу принадлежит, вероятно, видное место в развитии поражений сосудов (микро- и макроангиопатий). Кроме того, кетоацидоз лежит в основе одного из наиболее тяжелых осложнений диабета — диабетической комы. При очень высоком содержании сахара в крови (800-1200 мг%) может развиться другого рода коматозное состояние. Оно возникает вследствие значительной потери с мочой воды и повышения осмотического давления крови при сохранении нормального ее рН (гиперосмолярная кома).

В результате длительных н разнообразных нарушений углеводного, жирового и белкового обменов, сопровождающихся нарушениями водно-солевого баланса, у больных развиваются разнообразные микро- и макроангиопатий, вызывающие заболевания сетчатки (ретинопатия) , почек (нефропатия), нервной системы (нейропатия), трофические язвы на коже, общий атеросклероз, психические расстройства.

Установлено, что сахарный диабет — полипатогенетическое заболевание. Оно исходно может быть обусловлено: первичной недостаточностью секреции инсулина и гиперсекрецией диабетогенных гормонов (инсулинчувствительные, или ювенильные, формы диабета); резко сниженной чувствительностью тканей-мишеней к инсулину (инсулинрезистентные формы, или «диабет пожилых, тучных»). В патогенезе первой формы болезни, составляющей 15-20% больных диабетом, определенную роль могут играть наследственный фактор и образование аутоантител к белкам островкового аппарата. В развитии второй формы заболевания (более 80% лиц, страдающих диабетом) существенное значение имеет избыточной прием углеводной пищи, ожирение, неподвижный образ жизни.

Для компенсации сахарного диабета применяют в качестве заместительной терапии различные препараты инсулина; малоуглеводную (иногда маложировую) диету и сахароснижающие синтетические препараты — сульфанилмочевинные и бигуанидные. Соответственно инсулин эффективен лишь при инсулинчувствительных формах заболевания. Кроме того, ведутся попытки создания «искусственной поджелудочной железы» — компактного электронно-механического аппарата, заряженного инсулином и глюкагоном, который при соединении с кровеносным руслом может вводить гормоны в зависимости от концентрации глюкозы к крови.

Симптомы сахарного диабета могут возникать и при ряде других заболеваний, первично не связанных с эндокринными функциями поджелудочной железы или действием инсулина и глюкагона (разные формы гиперкортицизма, акромегалия).

В.Б. Розен

Белково-пептидной природы. Состоит из 2 ппц, соединенных дисульфидными связями.

Синтезируется в β-клетках островков Лангерганса (поджелудочная железа). Синтезируется в виде неактивного предшественника. Активируется частичным протеолизом.

Действует через специфические инсулиновые рецепторы: может менять активность фермента путем фосфорилирования или дефосфорилирования и/или индуцировать транскрипцию и синтез новых белков-ферментов.

Влияние на обмен веществ

Углеводный:

ü Основное влияние - вместе с глюкагоном поддерживает нормальный уровень глюкозы в крови (артериальная кровь - 3,5-5,5 мМ/л, венозная кровь - 6,5).

ü Активирует регуляторные ферменты синтеза гликогена (гликогенсинтаза), гликолиза (глюкокиназа, ФФК, пируваткиназа), ПФП (глюкоза-6Ф-дегидрогеназа).

Липидный:

ü Стимулирует депонирование жиров (увеличивает синтез ЛП-липазы)

ü Стимулирует синтез жиров в печени и жировой ткани

ü Способствует синтезу жиров из углеводов в жировой ткани (активирует ГЛЮТ-4)

ü Активирует синтез жирных кислот (ацетил-КоА-карбоксилаза)

ü Активирует синтез холестерола (ГМГ-редуктаза).

Белковый:

ü Стимулирует синтез белков (анаболический эффект)

ü Увеличивает транспорт аминокислот в клетки

ü Усиливает синтез ДНК и РНК.

Стимулирует синтез глюкозы.

С возрастом концентрация Са 2+ снижается и нарушается секреция инсулина.

В крови время полужизни - 3-5 минут.

После действия разрушается в печени под действием инсулиназы (расщепляет цепи инсулина).

При недостатке инсулина возникает сахарный диабет.

Сахарный диабет - заболевание, связанное с частичным или полным отсутствием инсулина.

Сахарный диабет 1 типа Сахарный диабет 2 типа
ИЗСД (инсулинзависимый сахарный диабет) Полное отсутствие синтеза и секреции инсулина в клетках поджелудочной железы. Причины: · Аутоиммунное поражение клеток (выработка антител к клеткам железы) · Гибели клеток в результате вирусных инфекций (оспа, краснуха, корь). Составляет 10-30% от всех заболевших сахарным диабетом. В основном проявляется у детей и подростков. Развивается быстро. ИНЗСД (инсулиннезависимый сахарный диабет) Частичное нарушение синтеза и секреции инсулина (иногда гормон вырабатывается в нормальном количестве) Причины: · Нарушение активации · Нарушение передачи сигнала от инсулина в клетки (нарушение рецепторов) · Недостаток синтеза ГЛЮТ-4 · Генетическая предрасположенность · Ожирение · Неправильное питание (много углеводов) · Малоподвижный образ жизни · Длительные стрессовые ситуации (адреналин ингибирует синтез инсулина). Развивается медленно.

Биохимические проявления сахарного диабета

1) Гипергликемия - нарушается потребление глюкозы инсулин-зависимыми тканями (жировая, мышцы). Даже при высокой концентрации глюкозы эти ткани находятся в состоянии энергетического голода.

2) Глюкозурия - при концентрации в крови >8,9 мМ/л глюкоза появляется в моче как патологический компонент.

3) Кетонемия - глюкоза не поступает в инсулин-зависимые ткани, то в них активируется β-окисление (жирные кислоты становятся основным источником энергии). Следовательно, образуется очень много ацетил-КоА, который не успевает утилизироваться в ЦТК и идет на синтез кетоновых тел (ацетон, ацетоацетат, β-гидроксибутират).

4) Кетонурия - появление кетоновых тел в моче.

5) Азотемия - при недостатке инсулина повышается катаболизм белков и аминокислот (дезаминирование), образуется много NH 3.

6) Азотурия - из аммиака образуется мочевина, которой больше выводится с мочой.

7) Полиурия - выведение глюкозы с мочой приводит к увеличению выделения воды (при сахарном диабете - 5-6 л/сут).

8) Полидепсия - повышенная жажда.

Осложнения сахарного диабета:

· Поздние

А: Острые осложнения проявляются в виде комы (нарушение обмена, потеря сознания).

Виды комы, в основе которых ацидоз и дегидратация тканей:

I - кето-ацидотическая кома - повышенный синтез кетоновых тел и ацидоз;

II - лакто-ацидотическая кома - нарушение кровообращения, снижение функции гемоглобина, которое вызывает гипоксию. Следовательно, катаболизм глюкозы смещается в сторону "анаэробного" гликолиза до лактата. Образуется много молочной кислоты, возникает ацидоз;

III - гиперосмолярная кома - из-за гипергликемии повышено осмотическое давление крови, и вода переносится из клеток в сосудистое русло, возникает дегидратация. В результате нарушается водно-электролитный обмен. Следовательно, происходит снижение периферического кровотока (мозга и почек) и гипоксия.

Б: Поздние осложнения:

основная причина - гипергликемия.

В результате происходит неферментативное (спонтанное) гликозилирование белков, при этом нарушается их функция. Так возникают различные "-патии" (ангио-, нейро-, нейро-, ретино-).

Например, в результате гликозилирования гемоглобина образуется гликозилированный ("гликированный") гемоглобин - HbA 1 c .

В норме концентрация HbA 1 c - 5%. При сахарном диабете - до 50%.

У него снижается сродство к кислороду → гипоксия.

В хрусталике глюкоза присоединяется к кристаллину, что повышает агрегацию молекул. Следовательно, возникает помутнение хрусталика, приводящее к катаракте.

При сахарном диабете нарушается синтез коллагена: из-за гликозилирования нарушается функция базальных мембран (например, кровеносных сосудов), следовательно, нарушается проницаемость сосудов и кровотока (в нижних конечностях). Это приводит к возникновению синдрома диабетической стопы и гангрене.

Присоединение глюкозы к апо-белкам В100 ЛНП изменяет их строение, они захватываются макрофагами как чужеродные, проникают в поврежденный эндотелий сосудов, повышая риск атеросклероза.

Лечение сахарного диабета:

· диетотерапия,

· инсулинотерапия (инъекции инсулина свиньи, отличающегося от человеческого одной аминокислотой),

· прием сахароснижающих препаратов:

o производные сульфанилмочевины - стимулируют синтез инсулина в поджелудочной железе (маннинил),

o бигуаниды - замедляют всасывание глюкозы в кишечнике, улучшают потребление тканями глюкозы (активируют ГЛЮТ-4).

Глюкагон

Состоит из 39 аминокислотных остатков.

Синтезируется в α-клетках островков Лангерганса (поджелудочная железа). Действует через цАМФ, рецепторы на поверхности мембраны.

Гипергликемический фактор (повышает уровень глюкозы в крови).

Влияние на обмен веществ:

Углеводный:

· стимулирует распад гликогена (гликогенфосфорилаза),

· стимулирует глюконеогенез (фруктоза-1,6-бисфосфатаза);

Липидный: усиливает мобилизацию жиров из жировой ткани (активирует ТАГ-липазу путем фосфорилирования),

· усиливает β-окисление жирных кислот (КАТ-I),

· индуцирует синтез кетоновых тел в митохондриях.

Адреналин

Производное тирозина. Катехоламин.

Синтезируется в мозговом слое надпочечников, синтез и секреция под влиянием ЦНС.

Действует через цАМФ, рецепторы находятся на поверхности мембраны (α- и β-адренергические).

Гормон стресса.

Повышает концентрацию глюкозы в крови, т.к. активирует гликогенфосфорилазу в печени.

В экстренных ситуациях активирует мобилизацию гликогена в мышечной ткани с образованием глюкозы для мышц.

Тормозит секрецию инсулина.

Кортизол

Синтезируется из холестерола путем гидроксилирования через прегненолон и прогестерон. Синтезируется в корковом веществе надпочечников.

Рецепторы в цитоплазме.

Влияние на обмен веществ:

· Стимулирует глюконеогенез (ПВК-карбоксилаза, ФЕП-карбоксикиназа). При высоких концентрациях повышает распад гликогена, что приводит к повышению уровня глюкозы в крови.

· Ингибирует синтез жиров в конечностях, стимулирует липолиз, синтез жиров в других частях тела.

· В периферических тканях (мышцах) тормозит биосинтез белков, стимулирует их катаболизм до аминокислот (для глюконеогенеза). В печени стимулирует синтез белков-ферментов глюконеогенеза.

Вызывает инволюцию лимфоидной ткани, гибель лимфоцитов.

Производные кортизола обладают противовоспалительной функцией (ингибируют фосфолипазу А2, что ведет к снижению уровня простагландинов - медиаторов воспаления).

Гиперкортицизм.

· повышенная секреция АКТГ (из-за опухоли) - болезнь Иценко-Кушинга;

· опухоль надпочечников - синдром Иценко-Кушинга.

В результате активирования глюконеогенеза, распада гликогена повышается концентрация глюкозы в крови. Возникает стероидный диабет (худые конечности, большой живот, лунообразное лицо).

Тиреоидные гормоны

Т 3 и Т 4 вырабатываются в фолликулах щитовидной железы из аминокислоты тирозина.

Рецепторы к ним располагаются в ядре, могут в цитоплазме.

Синтез зависит от поступления йода с пищей и водой. Для поддержания нормального синтеза требуется около 150 мкг йода в сутки (беременным - 200 мкг).

Механизм синтеза


1. В клетках фолликулов синтезируется тиреоглобулин (содержит 115 остатков тирозина).

2. Затем он поступает в полость фолликула.

3. Там происходит включение ионизированного йода (I - → I +) под действием тиреопероксидазы в третье или третье и пятое положение кольца тирозина. Образуется монойодтирозин (МИТ) и дийодтирозин (ДИТ).

4. Затем они конденсируются:

МИТ + ДИТ = Т 3 (трийодтирозин)

ДИТ + ДИТ = Т 4 (тетрайодтирозин)

Т 3 и Т 4 в составе тиреоглобулина не обладают активностью и могут находиться в фолликулах до появления стимула. Стимул - ТТГ.

5. Под действием ТТГ происходит активация ферментов (протеазы), которые отщепляют Т 3 и Т 4 от тиреоглобулина.

6. Т 3 и Т 4 поступают в кровь. Там они связываются с белками-переносчиками:

· тироксинсвязывающий глобулин (основной)

· тироксинсвязывающий преальбумин.

Наибольшей активностью обладает Т 3 , т.к. у него сродство к рецепторам в 10 раз выше, чем у Т 4 .

Действие Т 3 , Т 4

1) Действует на клетки:

§ повышает энергетический обмен (кроме гонад и клеток мозга)

§ усиливает потребление кислорода клетками

§ стимулирует синтез компонентов ЦПЭ

§ увеличивает количество митохондрий

§ в больших концентрациях - разобщитель окислительного фосфорилирования.

2) Повышает основной обмен.

При недостатке тиреоидных гормонов у новорожденных возникает кретинизм, у взрослых - гипотиреоз, микседема (слизистый отек), т.к. повышается синтез ГАГ и гиалуроновой кислоты, которые задерживают воду.

Также могут наблюдаться: Аутоиммунный тиреоидит. Эндемический зоб. Базедова болезнь.


ТЕМА 10

ПЕЧЕНЬ

Самая крупная железа. Выполняет множество функций:

ü поддержание нормальной концентрации глюкозы в крови за счет синтеза и распада гликогена и глюконеогенеза

ü защитная - синтез факторов свертывания крови (I, II, V, VII, IX, X)

ü влияет на липидный обмен: синтез Желчных кислот, кетоновых тел, ЛВП, фосфолипидов, 85% холестерола

ü влияет на белковый обмен: орнитиновый цикл, обезвреживание биогенных аминов

ü участвует в метаболизма гормонов

ü выполняет дезинтоксикационную функцию (обезвреживание).

Обезвреживанию подвергаются:

· ксенобиотики

· эндогенные токсические вещества.

Ксенобиотики - вещества, не выполняющие в организме энергетическую и пластическую функцию:

· предметы жизнедеятельности (транспорт, промышленность, сельское хозяйство)

· токсичные вещества парфюмерии, лакокрасочные изделия

· лекарственные вещества.

Обезвреживание может проходить в 2 стадии:

1 - если вещество гидрофобно, то на первой стадии оно становится гидрофильным (водорастворимым)

2 - конъюгация - соединение гидрофильных токсичных веществ с каким-либо другим → обезвреживание.

Обезвреживание может ограничиться первой стадии, если в процессе первой стадии токсичное вещество обрело гидрофильность и обезвредилось (вторая стадия не протекает).

Обезвреживание только второй стадией происходит, если токсичное вещество гидрофильное (протекает только конъюгация).

1 стадия обезвреживания: гидрофобное → гидрофильное

Может протекать путем:

· окисления

· восстановления

· гидролиза (расщепление)

· гидроксилирования - чаще всего (образование ОН-групп в токсичном веществе).

Принимает участие микросомальная ЦПЭ. (Митохондриальная ЦПЭ - энергетическая функция, микросомальная - пластическая).

Микросомы - обрывки гладкого ЭПР.

В микросомальной ЦПЭ могут функционировать ферменты:

· монооксигеназы - используют только один атом кислорода

· диоксигеназы - используют два атома кислорода = молекулу кислорода.

Микросомальная монооксигеназная ЦПЭ

Основной компонент - цитохром Р450. Он имеет два центра связывания: один - для атома кислорода, второй - для гидрофобного вещества.

Цитохром Р450 имеет следующие свойства:

· широкая субстратная специфичность (обезвреживает множество токсичных веществ - барбитураты, лекарственные вещества, спирт и т.д.);

· индуцируемость = усиление синтеза при употреблении токсичных веществ ("эффект царя Митридата", который принимал в течение жизни малые дозы яда, чтобы не быть отравленным).

Чтобы Р450 присоединил один атом кислорода и внедрил его к гидрофобному веществу, он должен быть активирован.

Р450 активируется электронами, поэтому ЦПЭ короткая.

Компоненты:

· НАДФН+Н + - кофермент из ПФП

· фермент НАДФН-зависимая-Р450-редуктаза - промежуточный переносчик; имеет 2 кофермента ФАД и ФМН - разделяют поток Н + и е - .

Механизм обезвреживания

(на примере индола, который образуется при гниении триптофана в кишечнике).



1. Два атома водорода (в виде 2е - и 2Н +) перемещаются к НАДФН-зависимой-Р450-рдуктазе: сначала на ФАД, потом на ФМН.

2. От него 2Н + поступают на восстановление одного атома кислорода.

3. 2е - присоединяются к Р450, активируют его (Р450*) и вместе с протонами идут на восстановление Н 2 О.

4. Активированный Р450 присоединяет к себе второй атом кислорода в один активный центр, а гидрофобное вещество - в другой.

5. Р450* внедряет кислород в гидрофобное вещество с образованием ОН-группы.

Образуется гидрофильное, но еще токсичное вещество.

Некоторые вещества после 1 стадии могут становиться еще токсичнее (парацетамол может превращаться в токсичное вещество, поражающее клетки печени).

2 стадия: конъюгация

Гидрофильное токсичное + Другое вещество = Парное, нетоксичное, выводится с желчью

Участвуют ферменты трансферазы (II класс).

Вещество, которое присоединяется к токсичному Донор вещества, которое присоединяется Фермент
Глюкуроновая кислота (производное глюкозы) УДФ-глюкуронат УДФ-глюкуронил-трансфераза
Серная кислота ФАФС 3"-фосфоаденозин-5"-фосфосульфат Сульфо-трансфераза
Глутатион Глу-Цис-Гли (обезвреживание токсичных форм кислорода) Глутатион-трансфераза
Ацетильные группы Ацетил-КоА Ацетил-трансфераза
Метильные группы SAM (биогенный амин) Метил-трансфераза
Глицин Глицин Глицин-трансфераза

В результате присоединения этих веществ токсичные вещества обезвреживаются.

Например, 2 стадия обезвреживания индола.



Обезвреживание билирубина

Нормальная концентрация билирубина в крови - 8-20 мкмоль/л.

Это пигмент красно-коричневого цвета, образуется при распаде гемоглобина.

Бывает прямой и непрямой билирубин.

Гипербилирубинемию - повышение концентрации билирубина может вызвать:

· повышение гемолиза эритроцитов

· нарушение функций печени

· нарушение оттока желчи.

Гем - простетическая группа гемоглобина. Эритроциты погибают и разрушаются через 20 дней. Освобожденный гемоглобин разрушается (в селезенке, печени, красном костном мозге).

1. Под действием гемоксигеназы разрушается связь между 1 и 2 кольцом гема. Образуется зеленый пигмент вердоглобин.

2. От него спонтанно отщепляется железо (с трансферрином поступает в печень, где депонируется и используется повторно) и белковая часть (расщепляется до аминокислот, которые используются повторно). Образуется желтый пигмент биливердин.

3. Биливердин восстанавливается биливердинредуктазой (кофермент НАДФН+Н + из ПФП).

4. Образуется красно-коричневый билирубин. Он токсичный, нерастворимый, непрямой (НПБил). Он поступает в кровь, соединяется с альбумином (белок-переносчик) и поступает в печень.

5. Печень захватывает его с помощью белков лигандин (Л) и протеин Z (Z). Их деффект вызывает наследственную желтуху - синдром Жильбера (Ϯ).

6. В печени непрямой билирубин конъюгирует с 2 молекулами глюкуроновой кислоты под действием УДФ-глюкуронилтрансферазы. Образуется прямой, обезвреженный, растворимый билирубин (ПрБил).

Дефект УДФ-глюкуронилтрансферазы вызывает синдром Криглера-Найяра (наследственная желтуха Ϯ).

7. Обезвреженный билирубин поступает в кишечник.

8. Под действием ферментов микрофлоры превращается там в бесцветный стеркобилиноген.

9. 95% его выводится с калом, где окисляется на воздухе, приобретая коричневый цвет, и называется стеркобилин.

10. 5% через геморроидальную вену поступает в почки и выводится с мочой. Окисляется на воздухе, приобретает желтый цвет и называется уробилиноген.

Обезвреживание билирубина

Желтуха

При концентрации билирубина в крови выше 30 ммоль/л он может откладываться в слизистых и прадавать им желтый цвет.

Желтуху диагностируют по крови, моче и калу.

В зависимости от причин желтуха бывает:

1. Надпеченочная = гемолитическая.

Причина - повышенный гемолиз эритроцитов (при переливании несовместимой группы крови или дефекте фермента ПФП глюкоза-6Ф-дегидрогеназа).

Следовательно, печень функционирует нормально, но не успевает обезвреживать много непрямого билирубина. Поэтому диагностическая картина такова:

2. Печеночная

Причина - поражение печени, нарушение функции, разрушение клеток (цирроз, гепатит, хронический алкоголизм).

Следовательно, нарушается функция печени и она меньше обезвреживает непрямого билирубина. А т.к. клетки печени разрушены, то обезвреженный (прямой) билирубин поступает в кровь.

3. Подпеченочная

Причина - нарушение оттока желчи (желче-каменная болезнь).

Следовательно, все в крови.

4. Физиологическая желтуха новорожденных

Может возникать в первые 2 недели.

· повышенный распад гемоглобина (т.к. HbF замещается наHbA);

· недостаток активности фермента УДФ-глюкуронилтрансферазы.

Что делать:

· вводить фенобарбитал - индуктор синтеза фермента УДФ-глюкуронилтрансферазы;

· облучать синезеленым светом (волны длиной 620 нм). В таких условиях билирубин превращается в нетоксичный фотоизомер и выводится.


ТЕМА 11

ГЕМОСТАЗ

Гемостаз - система, включающая в себя процессы:

· остановки кровотечения после травматического повреждения сосудов;

· поддержание крови в жидком состоянии;

· включает компоненты, способствующие растворению тромбов.

Гемостаз проходит в 3 стадии:

1) тромбоцитарный = первичный гемостаз (3-5 мин) - сужение кровеносных сосудов, заканчивается образованием белого тромба;

2) гемокоагуляционный = вторичный гемостаз (10-30 мин). Включает 3 этапа:

а) прокоагулянтный - активирование протромбокиназы и превращение протромбина в тромбин;

б) коагуляция - образование рыхлого фибринового сгустка;

в) ретракция - образование плотного красного фибринового тромба.

3) фибринолиз - растворение красного фибринового тромба с целью восстановления микроциркуляции в сосуде.

Существует противосвертывающая система крови, которая направлена на ограничение распространения тромба местом повреждения сосуда.

1. Первичный гемостаз

Только тромбоциты способны к адгезии и агрегации.

Адгезия - налипание на края раны. Агрегация - скучивание вокруг раны.

Тромбоциты должны быть активированы.

Активация тромбоцитов заключается в:

· изменении их формы с пластинчатой на звездчатую;

· появление на мембранах тромбогенных участков (отрицательно заряженных фосфолипидов мембран), на которых будет происходить свертывание крови.

В норме кровь не сворачивается, т.к. тромбоциты имеют пластинчатую форму, а не звездчатую, и не способны к агрегации.

В кровеносных сосудах вырабатываются простациклины (производные арахидоновой кислоты), которые тормозят агрегацию тромбоцитов и сужение кровеносных сосудов.

Для активации существуют первичные и вторичные индукторы активации:

1) Первичные -

· фактор фон Виллебранда

· коллаген

· тромбин;

2) Вторичные - вырабатываются под действием тромбина (первичного индуктора активации).

Механизма активации тромбоцитов

1. При повреждении кровеносных сосудов тромбоцитами и эндотелием выделяется фактор фон Виллебранда (фВ), который взаимодействует с рецепторами тромбоцитов и коллагеном поврежденных сосудов, образует между ними мостики и способствует адгезии (прилипание к краям раны).

Под действием фактора фон Виллебранда в тромбоцитах активируется фосфолипаза С (ФлС), которая стимулирует образование ИФ 3 , который стимулирует выведение Ca 2+ из внутриклеточных депо. Ca 2+ связывается с кальмодулином, и этот комплекс активирует миокиназу, которая путем фосфорилирования активирует сократительный белок тромбостенин. Он сокращается и изменяет форму тромбоцита с пластинчатой на звездчатую, что облегчает их сцепление между собой, т.е. агрегацию.

Коллаген (появляется при повреждении кровеносных сосудов) взаимодействует с рецепторами тромбоцитов, активирует фосфолипазу А2, которая отщепляет от фосфолипидов мембран арахидоновую кислоту (20:4). Она под действием циклооксигеназы (ЦОГ) превращается в тромбоксаны, которые вызывают сужение сосуда и агрегацию тромбоцитов (агрегация пока обратимая, т.к при надавливании на края раны кровотечение восстанавливается).


2. Необратимая агрегация наступает под действием тромбина, который через ИФ3 высвобождает кальций из депо. Кальций активирует протеинкиназу С (ПкС), которая путем фосфорилирования активирует сократительный белок плекстрин. Он способен сокращать секреторные гранулы и высвобождать из них вторичные индукторы активации тромбоцитов. Под их действием происходит сужение сосудов и необратимая агрегация с образованием белого тромбоцитарного тромба. Кровотечение останавливается.

Вторичные индукторы активации тромбоцитов:

· АДФ, Са2+ - усиливают агрегацию,

· тромбоглобулин - снижает синтез гепарина и простациклинов,

· серотонин - сужает сосуды,

· фибронектин - связывает тромбоциты с коллагеном сосуда,

· тромбоспондин - агрегация,

· фактор фон Виллебранда - агрегация и адгезия.

Кроме того, при активации тромбоцитов на их поверхности появляются отрицательно заряженные фосфолипиды мембран - фактор №3. Эти участки тромбогеннные, т.к. на них будет протекать свертывание крови.

Если диаметр кровеносного сосуда меньше 100 мкм, то свертывание крови заканчивается тромбоцитарным гемостазом.

На ингибировании первичного гемостаза основано действие средств, "разжижающих" кровь (тромбоаз, аспирин - ингибирует ЦОГ → тормозится агрегация → снижается тромбообразование).

Противоположное действие - коллагеновые гемостатические повязки, которые усиливают агрегацию, сужение кровеносных сосудов и, следовательно, более быстро останавливают кровотечение.

Если повреждается более крупный сосуд, то наступает 2 стадия - гемокоагуляция.

Происходит активация тромбокиназы, превращающей протромбин в тромбин. Это каскадный механизма, в результате которого проис ходит усиление сигнала.

В нем принимают участие 13 факторов свертывания крови . Они находятся в неактивном виде, но при повреждении сосудов активируются частичным протеолизом, и к их номеру добавляется "а" - активированный.

I - фибриноген; 6 ппц; синтезируется в печени; II - протромбин - фермент; синтезируется в печени с участием витамина К; III - тканевой тромбопластин - комплекс белка с фосфатидилсерином; синтезируется в эндотелии; IV - Са 2+ ; V - проакцелерин; белок-активатор; VI - (изъят из классификации); VII - проконвертин - фермент; синтезируется в печени с участием витамина К; VIII - антигемофильный глобулин А - белок-активатор; в крови связан с фактором фон Виллебранда; IX - антигемофильный глобулин В = фактор Кристмаса; фермент; синтезируется в печени с участием витамина К; X - фактор Стюарта-Брауэра; фермент; синтезируется в печени с участием витамина К; XI - антигемофильный глобулин С = фактор Розенталя = плазменный предшественник тромбопластина; синтезируется в печени; XII - фактор контакта = фактор Хагемана; XIII - фибринстабилизирующий фактор = фактор Лаки-Лоранда; фермент трансамидаза; Дополнительные факторы: Прекалликреин = фактор Флэтчера; ВМК = высокомолекулярный кининоген = фактор Фитцжеральда.

Ферментами являются II, VII, IX, X, XI, XII факторы.

Все дальнейшие реакции с участием факторов свертывания крови протекают на мембранах тромбоцитов или клетках эндотелия поврежденных сосудов .

Мембранные комплексы включают 4 компонента (на них происходит свертывание крови):

1. сами отрицательно заряженные фосфолипиды мембран;

2. Са 2+ - через него ферменты будут связываться с фосфолипидами мембран;

3. фермент (VII, IX, X, XI, XII факторы) - активируется частичным протеолизом, связывается с мембранами через ионы кальция своими отрицательно заряженными карбоксильными группами;

Все ферменты имеют дополнительный отрицательный заряд (карбоксильную группу) в составе глутаминовой кислоты. Образуются γ-карбоксиглутаминовые кислоты (ГКГК) в печени с участием витамина К. Антивитамины К (дикумарол и варфарин) препятствуют карбоксилированию глутаминовой кислоты и, следовательно, свертываемости крови.

Карбоксилирование глутаминовой кислоты

В результате этого происходит активация мембранных комплексов.

4. белок-активатор - усиливает действие фермента в 500-1000 раз.

2а - Прокоагулянтная стадия

На первой стадии необходимо активировать тромбокиназу. Эта реакция происходит на мембранах тромбоцитов.

Активация тромбокиназы

Тромбокиназа - комплекс факторов:

3. фермент (Xа фактор);

4. белок-активатор (Vа фактор).

Активация протекает двумя путями:

1 - прокоагулянтный (внешний) - 5-10 сек; инициатор - III фактор (тканевый);

2 - контактный (внутренний) - 10-12 мин; активируется при контакте XII фактора с коллагеном поврежденного сосуда. Менее распространен. Протекает возле воспаления на аномальных стенках (при атеросклерозе).

1- Внешний путь - каскадный (происходит усиление выработки тромбина).

На мембранах поврежденных клеток эндотелия сосудов появляется первый мембранный инициирующий комплекс:

1. отрицательно заряженные фосфолипиды мембран;

3. фермент (VII фактор);

4. белок-активатор (III фактор).

III фактор очень быстро активирует VII.

VIIа инициирует образование теназного мембранного комплекса.

Теназный мембранный комплекс:

1. отрицательно заряженные фосфолипиды мембран;

3. фермент (IХ фактор);

4. белок-активатор (VIII фактор).

В этом комплексе фактор IXа активирует тромбокназу (фактор Х).

Х фактор катализирует превращение небольшого количества протромбина в тромбин.

Тромбин по принципу обратной отрицательной связи вызывает активацию V, VII, VIII факторов в вышеперечисленных комплексах, что способствует каскадному усилению активации тромбокиназы.

В результате под действием Х фактора образуется много тромбина.

2 - Внутренний путь.

XII фактор при контакте с коллагеном активируется и образуется мембранный косплекс, который вместе с ВМК способен превращать прекалликреин в калликреин. Калликреин по принципу обратной отрицательной связи активирует XII фактор.

Общая схема прокоагулянтной стадии:


В результате протромбин активируется частичным протеолизом и превращается в тромбин:


2б - Коагуляция

Превращение фибриногена в фибрин под действием тромбина.

Фибриноген состоит из 6 ппц (2А, 2В и 2γ).



Отщепление отрицательно заряженных А и В концов способствует образованию фибрин-мономера, изменению его конформации, открытию участков взаимодействия с другими мономерами.

В результате их агрегации образуется фибрин-полимер.

Фибриновый сгусток рыхлый, в его структуре присутствует сыворотка и тромбоциты.

Под действием XIII фактора происходит образование ковалентных связей между отдельными мономерами.

2в - Ретракция

Под действием сократительного белка тромбостенина фибрин-полимер сжимается, из него выдавливается сыворотка. Образуется красный фибриновый тромб. который стягивает края раны, облегчая ее зарастание соединительной тканью.

3. Фибринолиз

Разрушение красного фибринового тромба.

Когда образовался тромб, в печени синтезируется плазминоген, который прикрепляется к тромбу вместе со своими активаторами.

Активаторы плазминогена:

· ТАП (основной) - тканевый активатор плазминогена - синтезируется эндотелием;

· урокиназа - синтезируется в моче, а также в тканях фибробластами и макрофагами;

· стрептокиназа - фермент стрептококков.

Под действием плазмина (активированного плазминогена) расщепляются фибриновые нити на мелкие кусочки (ппц), которые поступают в кровь. В результате тромб растворяется.


Похожая информация.


    Дайте определение понятию стресс, перечислите фазы стресса.

    Объясните, почему стресс называется «общим адаптационным синдромом»

    Назовите стресс-реализующие гормональные системы.

    Перечислите важнейшие гормоны, участвующие в развитии общего адаптационного синдрома.

    Перечислите основные эффекты гормонов, обеспечивающие кратковременную адаптацию, объясните механизм.

    Объясните понятие «системный структурный след адаптации», какова его физиологическая роль?.

    Эффекты какого гормона обеспечивают долговременную адаптацию, каковы механизмы действия этого гормона?

    Перечислите гормоны коры надпочечников.

    Укажите, в чем заключается влияние глюкокортикоидов

на белковый обмен

на жировой обмен

на углеводный обмен

Гормоны в регуляции основных параметров гомеостаза Гормональная регуляция обмена веществ

Когда мы говорим о регуляции всех видов обмена, мы немного лукавим. Дело в том, что избыток жиров приведет к нарушению их обмена и образованию, например, атеросклеротических бляшек, а недостаток к нарушению синтеза гормонов лишь через длительное время. Это же касается и нарушений белкового обмена. Лишь уровень глюкозы в крови является тем гомеостатическим параметром, снижение уровня которого приведет к гипогликемической коме через несколько минут. Это произойдет в первую очередь потому, что нейроны не получат глюкозы. Поэтому, говоря об обмене веществ, в первую очередь обратим внимание на гормональную регуляцию уровня глюкозы в крови, а параллельно остановимся на роли этих же гормонов в регуляции жирового и белкового обмена.

Регуляция углеводного обмена

Глюкоза наряду с жирами и белками является источником энергии в организме. Запасы энергии в организме в виде гликогена (углеводы) невелики по сравнению с запасом энергии, представленной в виде жиров. Так, количество гликогена в организме человека весом 70 кг составляет 480 г (400 г – гликоген мышц и 80 г – гликоген печени), что эквивалентно 1920 ккал (320 ккал-гликоген печени и 1600 – гликоген мышц). Количество циркулирующей глюкозы в крови составляет всего 20 г (80 ккал). Содержащаяся в этих двух депо глюкоза является основным и почти единственным источником питания инсулиннезависимых тканей. Так, головной мозг массой 1400 г при интенсивности кровоснабжения 60 мл/100 г в минуту потребляет 80 мг/мин глюкозы, т.е. около 115 г за 24 часа. Печень способна генерировать глюкозу со скоростью 130 мг/мин. Таким образом, более 60% глюкозы, образующейся в печени, идет на обеспечение нормальной активности центральной нервной системы, причем это количество остается неизменным не только при гипергликемии, но даже при диабетической коме. Потребление глюкозы ЦНС уменьшается лишь после того, как ее уровень в крови становится ниже 1,65 ммоль/л (30 мг%). В синтезе одной молекулы гликогена участвуют от 2000 до 20 000 молекул глюкозы. Образование гликогена из глюкозы начинается с процесса фосфорилирования ее с помощью ферментов глюкокиназы (в печени) и гексокиназы (в других тканях) с образованием глюкозо-6-фосфата (Г-6-Ф). Количество глюкозы в крови, оттекающей от печени, зависит в основном от двух взаимосвязанных процессов: гликолиза и глюконеогенеза, которые в свою очередь регулируются ключевыми ферментами фосфофруктокиназой и фруктозо-1, 6-бисфосфатазой соответственно. Активность этих ферментов регулируется гормонами.

Регуляция концентрации глюкозы в крови происходит двумя путями: 1) регуляция по принципу отклонения параметра от нормальных значений. Нормальная концентрация глюкозы в крови составляет 3.6 – 6.9 ммоль/л. Регуляция концентрации глюкозы в крови в зависимости от ее концентрации осуществляется двумя гормонами с противоположными эффектами – инсулином и глюкагоном; 2) регуляция по принципу возмущения – эта регуляция не зависит от концентрации глюкозы в крови, а осуществляется в соответствии с необходимостью увеличения уровня глюкозы в крови в различных, как правило, стрессирующих ситуациях. Гормоны, увеличивающие уровень глюкозы в крови, поэтому называются контринсулярными. К ним относятся: глюкагон, адреналин, норадреналин, кортизол, тиреоидные гормоны, соматотропин, потому, что единственный гормон, снижающий уровень глюкозы в крови – инсулин (рисунок 18).

Основное место в гормональной регуляции гомеостаза глюкозы в организме отводится инсулину. Под влиянием инсулина активируются ферменты фосфорилирования глюкозы, катализирующие образование Г-6-Ф. Инсулин также повышает проницаемость клеточной мембраны для глюкозы, что усиливает ее утилизацию. При увеличении концентрации Г-6-Ф в клетках повышается активность процессов, для которых он является исходным продуктом (гексозомонофосфатный цикл и анаэробный гликолиз). Инсулин увеличивает долю участия глюкозы в процессах образования энергии при неизменном общем уровне энергопродукции. Активация инсулином гликогенсинтетазы и гликогенветвящего фермента способствует увеличению синтеза гликогена. Наряду с этим инсулин оказывает ингибирующее влияние на глюкозо-6-фосфатазу печени и тормозит, таким образом, выход свободной глюкозы в кровь. Кроме того, инсулин угнетает активность ферментов, обеспечивающих глюконеогенез, за счет чего тормозится образование глюкозы из аминокислот Конечным результатом действия инсулина (при его избытке) является гипогликемия, стимулирующая секрецию контринсулярных гормонов-антагонистов инсулина.

ИНСУЛИН - гормон синтезируется  клетками островков Лангерганса поджелудочной железы. Основной стимул для секреции - повышение уровня глюкозы в крови. Гипергликемия способствует увеличению выработки инсулина, гипогликемия уменьшает образование и поступление гормона в кровь Кроме того, секреция инсулина усиливается под влиянием. ацетилхолина (парасимпатическая стимуляция), норадреналина через -адренорецепторы, а через -адренорецепторы норадреналин тормозит секрецию инсулина. Некоторые гормоны желудочно-кишечного тракта, такие как желудочный ингибирующий пептид, холецистокинин, секретин, увеличивают выход инсулина. Основной эффект гормона – снижение уровня глюкозы в крови.

Под воздействием инсулина происходит уменьшение концентрации глюкозы в плазме крови (гипогликемия). Это связано с тем, что инсулин способствует превращению глюкозы в гликоген в печени и мышцах (гликогенез). Он активирует ферменты, участвующие в превращении глюкозы в гликоген печени, и ингибирует ферменты, расщепляющие гликоген.

10852 0

Основные энергетические ресурсы живого организма — углеводы и жиры обладают высоким запасом потенциальной энергии, легко извлекаемой из них в клетках с помощью ферментных катаболических превращений. Энергия, высвобождаемая в процессе биологического окисления продуктов углеводного и жирового обменов, а также гликолиза, превращается в значительной степени в химическую энергию фосфатных связей синтезируемого АТФ.

Аккумулированная же в АТФ химическая энергия макроэргических связей, в свою очередь, расходуется на разного вида клеточную работу — создание и поддержание электрохимических градиентов, сокращение мышц, секреторные и некоторые транспортные процессы, биосинтез белка, жирных кислот и т.д. Помимо «топливной» функции углеводы и жиры наряду с белками выполняют роль важных поставщиков строительных, пластических материалов, входящих в основные структуры клетки, — нуклеиновых кислот, простых белков, гликопротеинов, ряда липидов и т.д.

Синтезируемая благодаря распаду углеводов и жиров АТФ не только обеспечивает клетки необходимой для работы энергией, но и является источником образования цАМФ, а также участвует в регуляции активности многих ферментов, состояния структурных белков, обеспечивая их фосфорилирование.

Углеводными и липидными субстратами, непосредственно утилизируемыми клетками, являются моносахариды (прежде всего глюкоза) и неэстерифицированные жирные кислоты (НЭЖК), а также в некоторых тканях кетоновые тела. Их источниками служат пищевые продукты, всасываемые из кишечника, депонированные в органах в форме гликогена углеводов и в форме нейтральных жиров липиды, а также неуглеводные предшественники, в основном аминокислоты и глицерин, образующие углеводы (глюконеогенез).

К депонирующим органам у позвоночных относятся печень и жировая (адипозная) ткань, к органам глюконеогенеза — печень и почки. У насекомых депонирующим органом является жировое тело. Кроме этого, источниками глюкозы и НЭЖК могут быть и некоторые запасные или другие продукты, хранящиеся или образующиеся в работающей клетке. Разные пути и стадии углеводного и жирового обменов взаимосвязаны многочисленными взаимовлияниями. Направление и интенсивность течения этих обменных процессов находятся в зависимости от ряда внешних и внутренних факторов. К ним относятся, в частности, количество и качество потребляемой пищи и ритмы ее поступления в организм, уровень мышечной и нервной деятельности и т.д.

Животный организм адаптируется к характеру пищевого режима, к нервной или мышечной нагрузке с помощью сложного комплекса координирующих механизмов. Так, контроль течения различных реакций углеводного и липидного обменов осуществляется на уровне клетки концентрациями соответствующих субстратов и ферментов, а также степенью накопления продуктов той или иной реакции. Эти контролирующие механизмы относятся к механизмам саморегуляции и реализуются как в одноклеточных, так и в многоклеточных организмах.

У последних регуляция утилизации углеводов и жиров может происходить на уровне межклеточных взаимодействий. В частности, оба вида обмена реципрокно взаимоконтролируются: НЭЖК в мышцах тормозят распад глюкозы, продукты же распада глюкозы в жировой ткани тормозят образование НЭЖК. У наиболее высокоорганизованных животных появляется особый межклеточный механизм регуляции межуточного обмена, определяемый возникновением в процессе эволюции эндокринной системы, имеющей первостепенное значение в контроле метаболических процессов целого организма.

Среди гормонов, участвующих в регуляции жирового и углеводного обменов у позвоночных, центральное место занимают следующие: гормоны желудочно-кишечного тракта, контролирующие переваривание пищи и всасывание продуктов пищеварения в кровь; инсулин и глюкагон — специфические регуляторы межуточного обмена углеводов и липидов; СТГ и функционально связанные с ним «соматомедины» и СИФ, глкжокортикоиды, АКТГ и адреналин — факторы неспецифической адаптации. Следует отметить, что многие названные гормоны принимают также непосредственное участие и в регуляции белкового обмена (см. гл. 9). Скорость секреции упомянутых гормонов и реализация их эффектов на ткани взаимосвязаны.

Мы не можем специально останавливаться на функционировании гормональных факторов желудочно-кишечного тракта, секретируемых в нервно-гуморальную фазу сокоотделения. Их главные эффекты хорошо известны из курса общей физилогии человека и животных и, кроме того, о них уже достаточно полно упоминалось в гл. 3. Более подробно остановимся на эндокринной регуляции межуточного метаболизма углеводов и жиров.

Гормоны и регуляция межуточного углеводного обмена. Интегральным показателем баланса обмена углеводов в организме позвоночных является концентрация глюкозы в крови. Этот показатель стабилен и составляет у млекопитающих примерно 100 мг% (5 ммоль/л). Его отклонения в норме обычно не превышают ±30%. Уровень глюкозы в крови зависит, с одной стороны, от притока моносахарида в кровь преимущественно из кишечника, печени и почек и, с другой — от его оттока в работающие и депонирующие ткани (рис. 95).


Рис. 95. Пути поддержания динамического баланса глюкозы в крови
Мембраны мышечных и адилозных клеток имеют «барьер» для транспорта глюкозы; Гл-6-ф — глюкозо-6-фосфат


Приток глюкозы из печени и почек определяется соотношением активностей гликогенфосфорилазной и гликогенсинтетазной реакции в печени, соотношением интенсивности распада глюкозы и интенсивности глюконеогенеза в печени и отчасти в почке. Поступление глюкозы в кровь прямо коррелирует с уровнями фосфорилазной реакции и процессов глюконеогенеза.

Отток глюкозы из крови в ткани находится в прямой зависимости от скорости ее транспорта в мышечные, адипозные и лимфоидные клетки, мембраны которых создают барьер для проникновения в них глюкозы (напомним, что мембраны клеток печени, мозга и почек легко проницаемы для моносахарида); метаболической утилизации глюкозы, в свою очередь зависимой от проницаемости к ней мембран и от активности ключевых ферментов ее распада; превращения глюкозы в гликоген в печеночных клетках (Левин и др., 1955; Ньюсхолм, Рэндл, 1964; Фоа, 1972).

Все эти процессы, сопряженные с транспортом и метаболизмом глюкозы, непосредственно контролируются комплексом гормональных факторов.

Гормональные регуляторы углеводного обмена по действию на общее направление обмена и уровень гликемии могут быть условно разделены на два типа. Первый тип гормонов стимулирует утилизацию глюкозы тканями и ее депонирование в форме гликогена, но тормозит глюконеогенез, и, следовательно, вызывает снижение концентрации глюкозы в крови.

Гормоном такого типа действия является инсулин. Второй тип гормонов стимулирует распад гликогена и глюконеогенез, а следовательно, вызывает повышение содержания глюкозы в крови. К гормонам этого типа относятся глюкагон (а также секретин и ВИП) и адреналин. Гормоны третьего типа стимулируют глюконеогенез в печени, тормозят утилизацию глюкозы различными клетками и, хотя усиливают образование гликогена гепатоцитами, в результате преобладания первых двух эффектов, как правило, также повышают уровень глюкозы в крови. К гормонам данного типа можно отнести глюкокортикоиды и СТГ — «соматомедины». Вместе с тем, обладая однонаправленным действием на процессы глюконеогенеза, синтеза гликогена и гликолиза, глюкокортикоиды и СТГ — «соматомедины» по-разному влияют на проницаемость мембран клеток мышечной и адипозной ткани к глюкозе.

По направленности действия на концентрацию глюкозы в крови инсулин является гипогликемическим гормоном (гормон «покоя и насыщения»), гормоны же второго и третьего типов — гипергликемическими (гормоны «стресса и и голодания») (рис. 96).



Рис 96. Гормональная регуляция углеводного гомеостаза:
сплошными стрелками обозначена стимуляция эффекта, пунктирными — торможение


Инсулин можно назвать гормоном усвоения и депонирования углеводов. Одной из причин усиления утилизации глюкозы в тканях является стимуляция гликолиза. Она осуществляется, возможно, на уровне активации ключевых ферментов гликолиза гексокиназы, особенно одной из четырех известных ее изоформ — гексокиназы II, и глюкокиназы (Вебер, 1966; Ильин, 1966, 1968). По-видимому, определенную роль в стимуляции катаболизма глюкозы инсулином играет и ускорение пентозофосфатного пути на стадии глюкозо-6-фосфатдегидрогеназной реакции (Лейтес, Лаптева, 1967). Считается, что в стимуляции захвата глюкозы печенью при пищевой гипергликемии под влиянием инсулина важнейшую роль играет гормональная индукция специфического печеночного фермента глюкокиназы, избирательно фосфорилирующего глюкозу при высоких ее концентрациях.

Главная причина стимуляции утилизации глюкозы мышечными и жировыми клетками — прежде всего избирательное повышение проницаемости клеточных мембран к моносахариду (Лунсгаард, 1939; Левин, 1950). Таким путем достигается повышение концентрации субстратов для гексокиназной реакции и пентозофосфатного пути.

Усиление гликолиза под влиянием инсулина в скелетных мышцах и миокарде играет существенную роль в накоплении АТФ и обеспечении работоспособности мышечных клеток. В печени усиление гликолиза, по-видимому, важно не столько для повышения включения пирувата в систему тканевого дыхания, сколько для накопления ацетил-КоА и малонил-КоА как предшественников образования многоатомных жирных кислот, а следовательно, и триглицеридов (Ньюсхолм, Старт, 1973).

Образующийся в процессе гликолиза глицерофосфат также включается в синтез нейтрального жира. Кроме того, и в печени, и особенно в адипозной ткани для повышения уровня липогенеза из глюкозы существенную роль играет стимуляция гормоном глюкозо-6-фосфатдегидрогеназной реакции, приводящей к образованию НАДФН — восстанавливающего кофактора, необходимого для биосинтеза жирных кислот и глицерофосфата. При этом у млекопитающих только 3-5% всасываемой глюкозы превращается в печеночной гликоген, а более 30% накапливается в виде жира, откладываемого в депонирующих органах.

Таким образом, основное направление действия инсулина на гликолиз и пентозофоофатный путь в печени и особенно в жировой клетчатке сводится к обеспечению образования триглицеридов. У млекопитающих и птиц в адипоцитах, а у низших позвоночных в гепатоцитах глюкоза — один из главных источников депонируемых триглицеридов. В данных случаях физиологический смысл гормональной стимуляции утилизации углеводов сводится в значительной мере к стимуляции депонирования липидов. Одновременно с этим инсулин непосредственно влияет на синтез гликогена — депонируемой формы углеводов — не только в печени, но и в мышцах, почке, и, возможно, жировой ткани.

Гормон оказывает стимулирующий эффект на гликогенообразование, повышая активность гликогенсинтетазы (переход неактивной D-формы в активную I-форму) и ингибируя гликогенфосфорилазу (переход малоактивной 6-формы в л-форму) и тем самым тормозя гликогенолиз в клетках (рис. 97). Оба эффекта инсулина на эти ферменты в печени опосредуются, по-видимому, активацией мембранной протеиназы, накоплением гликопептидов, активацией фосфодиэстеразы цАМФ.


Рис 97. Основные этапы гликолиза, глюконеогенеза и синтеза гликогена (по Ильину, 1965 с изменениями)


Еще одним важным направлением действия инсулина на углеводной обмен является торможение процессов глюконеогенеза в печени (Кребс, 1964; Ильин, 1965; Икстон и др., 1971). Торможение глюконеогенеза гормоном осуществляется на уровне снижения синтеза ключевых ферментов фосфоенолпируваткарбоксикиназы и фруктозо- 16-дифосфатазы. Эти эффекты опосредуются также повышением скорости образования гликопептидов — медиаторов гормона (рис. 98).

Глюкоза при любых физиологических состояниях — главный источник питания нервных клеток. При увеличении секреции инсулина происходит некоторое повышение потребления глюкозы нервной тканью, по-видимому, благодаря стимуляции в ней гликолиза. Однако при высоких концентрациях гормона в крови, вызывающих гипогликемию, возникает углеводное голодание мозга и торможение его функций.

После введения очень больших доз инсулина глубокое торможение мозговых центров может приводить сначала к развитию судорог, затем к потере сознания и падению кровяного давления. Такое состояние, возникающее при концентрации глюкозы в крови ниже 45-50 мг%, называют инсулиновым (гипогликемическим) шоком. Судорожную и шоковую реакцию на инсулин используют для биологической стандартизации препаратов инсулина (Смит, 1950; Стюарт, 1960).



Похожие статьи
  • Сколько калорий в пирожке с капустой

    Все мы любим пирожки. У многих пирожки – это воспоминания о детстве, о субботнем утре, о деревне; бабушкины пирожки для многих всегда останутся самыми вкусными и ароматными. И нередко на диете бывает легче перенести отсутствие десерта, чем запрет...

    Насосные станции
  • Афанасий фет В каком веке родился фет

    Родился в семье помещика Афанасия Неофитовича Шеншина и матери, которая ушла к нему от мужа Иоганна-Петера Фета. После четырнадцати лет орловской духовной консисторией Афанасию была возвращена фамилия предыдущего мужа матери, из-за чего он терял...

    Нормы и правила
  • Сонник: к чему снится Ругаться

    Ругаться по соннику эзотерика Е.Цветкова Ругаться – Браниться с кем-то – досада; слышать ругань – официальная церемония; с женой, мужем – см. Жена, муж.Ругаться – Досада. Сонник Странника (Терентия Смирнова) Толкование Ругались из вашего сна...

    Проектирование