Как самому рассчитать ламповый приемник. Трехламповый кв супергетеродин. Внешний вид приемника и принципиальная схема

25.10.2023

Звук, похожий на позвякивание фужеров и рюмочек, раздающийся из коробки с радиолампами, напоминал подготовку к торжеству. Вот они, похожие на ёлочные игрушки, радиолампы 6Ж5П 60-х годов…. Пропустим воспоминания. Вернуться к старинной консервации радиодеталей побудил просмотр комментариев к посту
«Детекторные и прямого усиления приёмники УКВ(FM) диапазона» , включающих в себя схему на радиолампах и конструкцию приёмника на этот диапазон. Таким образом, я решил дополнить статью построением лампового регенеративного приёмника УКВ диапазона (87,5 – 108 МГц).


Ретро-фантастика, таких приёмников прямого усиления, на такие частоты, да ещё на лампе, в промышленном масштабе не делалось! Время вернуться в прошлое и собрать в будущем схему.

0 – V – 1, детектор на лампе и усилитель для телефона или динамика.

В юности я собирал на 6Ж5П любительскую радиостанцию диапазона 28 – 29,7 МГц, где использовался приёмник с регенеративным детектором. Помню, отличная получилась конструкция.

Желание слетать в прошлое было настолько сильным, что я просто решил сделать макет, а уже потом, в будущем оформить всё как следует, а потому прошу простить за ту небрежность в сборке. Очень интересно было узнать, как всё это будет работать на частотах FM диапазона (87,5 – 108 МГц).

Из всего, что было под рукой, собрал схему, и она заработала! Практически весь приёмник состоит из одной радиолампы, а учитывая, что в настоящее время в диапазоне FM работает более 40 радиостанций, неоценимо и торжество радиоприёма!


Фото1. Макет приёмника.

Самое трудное, с чем столкнулся, так это питание радиолампы. Получилось сразу несколько блоков питания. От одного источника (12 вольт) питается активная колонка, уровня сигнала хватило для работы динамика. Импульсным блоком питания с постоянным напряжением 6 вольт (подкрутил крутку к этому номиналу) запитал накал. Вместо анодного, подал всего 24 вольта от двух последовательно соединенныхмалогабаритных аккумуляторов, думал, хватит для детектора и действительно хватило. В дальнейшем, наверно, будет целая тема – малогабаритный импульсный блок питания для небольшой ламповой конструкции. Где будут отсутствовать громоздкие сетевые трансформаторы. Похожая тема уже была: «Блок питания лампового усилителя из деталей компьютеров».



Рис.1. Схема радиоприёмника FM диапазона.

Это пока только проверочная схема, которую я изобразил по памяти из очередной старинной хрестоматии радиолюбителя, по которой когда-то собирал любительскую радиостанцию. Оригинал схемы я так и не нашёл, поэтому в данном эскизе найдёте неточности, но это неважно, практика показала, что отреставрированная конструкция вполне работоспособна.

Напомню, что детектор называется регенеративным потому, что в нём используется положительная обратная связь (ПОС), которая обеспечивается неполным включением контура к катоду радиолампы (к одному витку по отношению к земле). Обратной связь называется оттого, что часть усиленного сигнала с выхода усилителя (детектора) обратно прикладывается к входу каскада. Положительная связь потому, что фаза обратного сигнала совпадает с фазой входного, что и даёт прирост усиления. При желании место отвода можно подбирать, меняя влияние ПОСили повышая анодное напряжение и тем самым усиливая ПОС, что скажется на росте коэффициента передачи детектирующего каскада и громкости, сужением полосы пропускания и лучшей селективности (избирательности), и, как негативный фактор, при более глубокой связи неизбежно приведёт к искажениям, фону и шумам, и в конце концов к самовозбуждению приёмника или превращению его в генератор высокой частоты.


Фото 2. Макет приёмника.

Настройку на станции осуществляю подстроечным конденсатором 5 – 30 пФ, а это крайне неудобно, поскольку диапазон весь забит радиостанциями. Хорошо, ещё, что не все 40 радиостанций вещают из одной точки и приёмник предпочитает брать только близко расположенные передатчики, ведь его чувствительность всего 300 мкВ. Для более точной настройки контура, диэлектрической отвёрткой чуть давлю на виток катушки, смещая его по отношению к другому так, чтобы добиться изменения индуктивности, что обеспечиваетдополнительную подстройку на радиостанцию.

Когда я убедился, что всё работает, то всё разобрал и распихал «кишки» по ящикам стола, однако на следующий день опять всё подсоединил воедино, такая неохота была расставаться с ностальгией, настраиваться на станции диэлектрической отвёрткой, подёргивать головой в такт музыкальных композиций. Это состояние продолжалось несколько дней, и с каждым днём я старался сделать макет более совершенным или завершённым для дальнейшего использования.

Попытка запитать всё от сети принесла первую неудачу. Пока анодное напряжение подавалось от аккумуляторов, фона 50 Гц не было, но стоило подключить сетевой трансформаторный блок питания, фон появился, правда, напряжение вместо 24 теперь возросло до 40 вольт. Пришлось помимо конденсаторов большой ёмкости (470 мкФ) по цепям питания добавить регулятор ПОС, на вторую (экранирующую) сетку радиолампы. Теперь настройка производится двумя ручками, так как уровень обратной связи ещё меняется по диапазону, а для удобства настройки я использовал плату с переменным конденсатором (200 пФ) от предыдущих поделок. При уменьшении обратной связи фон пропадает. В комплект к конденсатору увязалась и старая катушка из предыдущих поделок, большего диаметра (диаметр оправки 1,2 см, диаметр провода 2 мм, 4 витка провода), правда один виток пришлось замкнуть, чтобы точно попасть в диапазон.

Конструкция.

В городе приёмник хорошо принимает радиостанции, расположенные в радиусе до 10 километров, как на штыревую антенну, так и провод длиной в 0,75 метра.


Хотел сделать УНЧ на лампе, но в магазинах не оказалось ламповых панелей. Пришлось вместо готового усилителя на микросхеме TDA 7496LK , рассчитанного на 12 вольт, поставить самодельный на микросхеме МС 34119 и запитать его от постоянного напряжения накала.

Просится ещё усилитель высокой частоты (УВЧ), чтобы уменьшить влияние антенны, что сделает настройку стабильнее,улучшит соотношение сигнал/шум, тем самым поднимет чувствительность. Хорошо бы УВЧ тоже сделать на лампе.

Всё пора заканчивать, речь шла только о регенеративном детекторе на диапазон FM .

А если сделать к этому детектору сменные катушки на разъёмах то

получится всеволновый приёмник прямого усиления как АМ, так и ЧМ.


Прошла неделя, и я решил сделать приёмник мобильным с помощью простенького преобразователя напряжения на одном транзисторе.

Мобильный блок питания.

Чисто случайно обнаружил, что старый транзистор КТ808А подходит к радиатору от светодиодной лампы. Так родился повышающий преобразователь напряжения, в котором транзистор объединён с импульсным трансформатором от старого компьютерного блока питания. Таким образом, аккумулятор обеспечивает накальное напряжение 6 вольт, и это же напряжение преобразуется в 90 вольт для анодного питания. Нагруженный блок питания потребляет 350 мА, и ток 450 мА проходит через накал лампы 6Ж5П.С преобразователем анодного напряжения ламповая конструкция получилась малогабаритной.

Теперь решил весь приёмник сделать ламповым и уже опробовал работу УНЧ на лампе 6Ж1П, она нормально работает при низком анодном напряжении, а ток накала у неё в 2 раза меньше чем у лампы 6Ж5П.

Схема радиоприёмника на 28 МГц.

Монтаж радиостанции на 28 МГц.

Дополнение к комментариям.

Если чуть изменить схему на рис.1, добавив две - три детали, то получится сверхрегенеративный детектор. Да, ему присуще «бешеная» чувствительность, хорошая избирательность по соседнему каналу, что нельзя сказать об «отличном качестве звука». Мне пока не удаётся получить хороший динамический диапазон от сверхрегенеративного детектора, собранного по схеме рис.4, хотя для сороковых годов прошлого века можно было считать, что этот приёмник обладает отличным качеством. Но помнить историю радиоприёма надо, а поэтому на очереди сборка суперсверхрегенеративного приёмника на лампах.



Рис. 5. Ламповый сверхрегенеративный приёмник диапазона FM (87.5 - 108 МГц).

Да, кстати, по поводу истории.
Я собрал и продолжаю собирать коллекцию схем довоенных (период 1930 – 1941 г.) сверхрегенеративных приёмников на УКВ диапазон (43 – 75 МГц).

В статье "Ламповый сверхрегенеративный приёмник ЧМ (FM) "

Я повторил редко встречающуюся в настоящее время схему сверхрегенератора 1932 года. В этой же статье собирается коллекция схем сверхрегенеративных УКВ приёмников за период 1930 - 1941 годы.

Здравствуйте.

Примечание

В конце статьи есть два видеоролика, которые примерно дублируют содержимое статьи и демонстрируют работу устройства.


Могу предположить, что многих здешних обитателей привлекают электронные устройства, основанные на электронных лампах (лично меня радует теплота, приятный свет и монументальность ламповых конструкций), но при этом желание сконструировать что-то теплое и ламповое своими руками часто ломается о боязнь связываться с высокими напряжениями или проблемы с поиском специфических трансформаторов. И этой статьей я хочу попытаться помочь страждущим, т.е. описать ламповую конструкцию с низким анодным напряжением, очень простой схемой, распространенными элементами и отсутствуем потребности в выходном трансформаторе. При этом это не очередной усилитель для наушников или какой-нибудь овердрайв для гитары, а намного более интересное устройство.

«Что же это за конструкция?» - спросите вы. А ответ мой прост: "Сверхрегенератор !".
Сверхрегенераторы - это очень интересная разновидность радиоприемников, которая отличается простотой схем и неплохими характеристиками, сравнимыми с простыми супергетеродинами. Сабжи были крайне популярны в середине прошлого века (особенно в портативной электронике) и предназначены они в первую очередь для приема станций с амплитудной модуляцией в УКВ диапазоне, но также могут принимать станции с частотной модуляцией (т.е. для приема тех самых обычных FM-станций).

Основным элементом данного типа приемников является сверхрегенеративный детектор, который является одновременно как частотным детектором, так и усилителем радиочастоты. Такой эффект достигается за счет применения регулируемой положительной обратной связи. Подробно описывать теорию процесса не вижу смысла, так как «все написано до нас» и без проблем осваивается по этой ссылке .

Далее в данном наборе букофф будет сделан акцент на описание постройки проверенной конструкции, ибо встреченные в литературе схемы часто сложнее и требуют более высокого анодного напряжения, что нам не подходит.

Начал я поиск схемы, удовлетворяющей поставленной требованиям, с книги товарища Туторского «Простейшие любительские передатчики и приемники УКВ» образца 1952 года. Там нашлась схема сверхрегенератора, но лампу, которую было предложено использовать я не нашел, а с аналогом схема у меня так нормально и не завелась, так что поиски были продолжены.

Затем была найдена вот эта . Она уже подходила мне лучше, но в ней присутствовала зарубежная лампа, которую найти еще сложнее. В итоге было принято решение начать эксперименты с использованием распространенного примерного аналога, а именно, лампы 6н23п, которая прекрасно себя чувствует в УКВ и может работать при не слишком большом анодном напряжении.

Взяв за основу эту схему:

И проведя ряд экспериментов была сформирована следующая схема на лампе 6н23п:


Данная конструкция работает сразу (при правильном монтаже и живой лампе), причем выдает неплохие результаты даже на обычные наушники-вкладыши.

Теперь подробнее пройдемся по элементам схемы и начнем с лампы 6н23п (двойной триод):


Чтобы понять правильное расположение ног лампы (информация для тех, кто раньше с лампами дел не имел), нужно повернуть ее ножками к себе и ключом вниз (сектор без ножек), тогда представший перед вами прекрасный вид будет соответствовать картинке с распиновкой лампы (работает и для большинства других ламп). Как видно по рисунку, в лампе целых два триода, но нам нужен всего один. Вы можете использовать любой, никакой разницы нет.

Теперь пойдем по схема слева на право. Катушки индуктивности L1 и L2 лучше всего мотать на общем круглом основании (оправке), идеально для этого подходит медицинский шприц диаметром 15мм, причем L1 желательно мотать поверх картонной трубки, которая с небольшим усилием движется по корпусу шприца, чем обеспечивает регулировки связи между катушками. В качестве антенны к крайнему выводу L1 можно припаять кусок провода или же припаять антенное гнездо и использовать что-то более серьезное.

L1 и L2 желательно мотать толстым проводом для повышения добротности, например, проводом 1мм и больше с шагом 2мм (особая точность тут не нужна, так что можете особо не заморачиваться с каждым витком). Для L1 нужно намотать 2 витка, а для L2 - 4-5 витков.

Далее идут конденсаторы C1 и C2, которые представляют собой двухсекционный конденсатор переменной емкости (КПЕ) с воздушным диэлектриком, он является идеальный решением для подобных схем, КПЕ с твердым диэлектриком использоваться нежелательно. Наверное, КПЕ является самым редким элементом данной схемы, но его довольно легко найти в любой старой радиоаппаратуре или на барахолках, хотя его можно заметить и двумя обычным конденсаторами (обязательно керамическими), но тогда придется обеспечивать подстройку с помощью импровизированного вариометра (прибора для плавного изменения индуктивности). Пример КПЕ:

Нам нужно всего две секции КПЕ и они обязательно должны быть симметричны, т.е. иметь одинаковую емкость в любом положении регулировки. Их общей точной будет служить контакт подвижной части КПЕ.

Затем следуется цепочка гашения выполненная на резисторе R1 (2.2МОм) и конденсаторе C3 (10 пФ). Их значения можно менять в небольших пределах.

Катушка L3 выполняет роль анодного дросселя, т.е. не позволяется высокой частоте пройти дальше. Подойдет любой дроссель (только не на железном магнитопроводе) с индуктивностью 100-200 мкГн, но проще намотать на корпус сточенного мощного резистора 100-200 витков тонкого медного эмалированного провода.

Конденсатор C4 служит для отделения постоянной составляющей на выходе приемника. Наушники или усилитель можно подключать непосредственно к нему. Емкость его может варьироваться в довольно больших пределах. Желательно, чтобы C4 был пленочный или бумажный, но с керамическим тоже будет работать.

Резистор R3 представляет собой обычный потенциометр на 33кОм, который служит для регулирования анодного напряжения, чем позволяет менять режим лампы. Это необходимо для для более точной подстройки режима под конкретную радиостанцию. Можно заменить на постоянный резистор, но это нежелательно.

На этом элементы закончились. Как видите схема очень простая.

И теперь немного по поводу питания и монтажа приемника.

Анодное питание можно смело использовать от 10В до 30В (можно и больше, но там уже немного опасно подключать низкоомную аппаратуру). Ток там совсем небольшой и для питания подойдет БП любой мощности с необходимым напряжением, но желательно, чтоб он был стабилизирован и имел минимум шумов.

И еще обязательным условием является питание накала лампы (на картинке с распиновкой он обозначен как нагреватели), так как без него она работать не будет. Тут уже токи нужны поболее (300-400 мА), но напряжение всего 6.3В. Подойдет как переменное 50Гц, так и постоянное напряжение, причем оно может быть от 5 и до 7В, но лучше использовать каноничное 6.3В. Лично я не пробовал использовать 5В на накале, но скорее всего все будет нормально работать. Накал подается на ножки 4 и 5.

Теперь про монтаж. Идеальным является расположение всех элементов схемы в металлическом корпусе с подключенной к нему в одной точке землей, но будет работать и вообще без корпуса. Так как схема работает в УКВ диапазоне, все соединения в высокочастотной части схемы должны быть максимального короткими для обеспечения большей стабильности и качества работы устройства. Вот пример первого прототипа:

При таком монтаже все работало. Но с металлическим корпусом-шасси немного стабильнее:

Для таких схем идеальным является навесной монтаж, так как он дает хорошие электрические характеристики и позволяет без особых затруднений вносить поправки в схемы, что с платой уже не так просто и аккуратно получается. Хотя и мой монтаж аккуратным назвать нельзя.

Теперь по поводу наладки.

После того как вы на 100% убедились в правильности монтажа, подали напряжение и ничего не взорвалась и не загорелось - это значит, что скорее всего схема работает, если использованы правильные номиналы элементов. И вы скорее всего услышите в наушниках шумы. Если во всех положениях КПЕ вы не слишите станции, и вы точно уверены, что у вас принимаются вещательные станции на других устройствах, то попробуйте изменить количество витков катушки L2, этим вы перестроите частоту резонанса контура и возможно попадете на нужный диапазон. И пробуйте крутить ручку переменного резистора - это тоже может помочь. Если совсем ничего не помогает, то можно поэкспериментировать с антенной. На этом наладка завершается.

На этом этапе все самое основное уже сказано, а представленное выше неумелое повествование можно дополнить следующими роликами, которые иллюстрируют приемник на разных этапах разработки и демонстрируются качество его работы.

Чисто ламповый вариант (на макетном уровне):


Вариант с добавлением УНЧ на ИМС (уже с шасси):

Катушки наматываются проводом в любой изоляции. Диаметр провода у катушек L1 и L2 от 0,1 до 0,2 мм. Диаметр провода для катушки L3 от 0,1 до 0,15 мм. Намотка ведется «внавал», то есть без соблюдения какого-либо порядка расположения витков.
Начало и конец каждой катушки пропускают в маленькие отверстия, проколотые в картонных щечках. После намотки катушек желательно пропитать нх горячим парафином; это увеличит прочность обмоток и в дальнейшем предохранит их от сырости.
Отправляясь в поход, узнайте на ближайшем радиоузле, на какой волне работает местная радиостанция, и намотайте катушки приемника с учетом следующих данных.
Для приема радиостанций с длиной волны от 1 800 до 1 300 м ка катушки L1 и L2 наматывают по 190 витков провода. Для приема волн от 1 300 до 1 000 м - по 150 витков; для волн от 500 до 200 м - по 75 витков. На катушку L3 во всех случаях наматывают 50 витков. Наматывать провод надо только в одну сторону. Когда провод намотан на катушку, ее укрепляют на верхней стороне монтажной панели и соединяют со схемой. При этом конец К1 от верхней катушки пропускается через отверстие / в панели и присоединяется к штырьку 2 первой лампы; конец К2 верхней катушки соединяется с концом К3 нижней катушки. Соединение надо сделать проводом длиной около 100 мм. Конец К1 нижней катушки через отверстие 2 соединяется со штырьком 3 первой лампы. Конец К5 средней катушки через отверстие 4 припаивается к штырьку 2 второй лампы. Конец К6 через отверстие 3 припаивается к правой скобке телефона.
Для питания приемника нужно иметь 7 батареек от карманного фонарика. Пять из них соединяются между собой последовательно, то есть плюс одной батарейки соединяется с минусом второй, плюс второй с минусом третьей и т. д. и подключаются к скобкам плюс анода и минус анода. С двумя другими батареями поступают так: цинковые стаканчики всех элементов соединяют вместе и подключают к скобке минус накала, а угольные стержни, соединенные вместе, подключают к скобке плюс накала через выключатель. К скобкам «телефон» присоединяют наушники. Если будут использованы пьезонаушники, то к их концам (параллельно) присоединяют сопротивление от 10 тыс. до 20 тыс. ом.
Приемник собран. Вам остается его наладить. Вы вставляете лампы, присоединяете антенну (кусок провода 8-10 м, заброшенный на дерево) и делаете заземление (железный штырек вбиваете в землю). Теперь на время замкните концы катушки обратной связи К5 и К6 и, включив накал, передвигайте верхнюю катушку по каркасу, пока не услышите передачу. Если настроить приемник не удается, снимите верхнюю катушку с каркаса и наденьте ее другой стороной. Снова настройте. Если и в этом случае вы не услышите передачи, присоедините параллельно контуру к концам К1 и К2 конденсатор постоянной емкости, подбирая его величину от 100 до 500 ммF. При подключении конденсаторов нужно заново производить настройку.
Подключая конденсаторы различной емкости, вы можете настроить приемник на любую из радиостанций, которая хорошо слышна в данном районе. Добившись этого, разомкните концы катушки обратной связи: громкость приема должна возрасти. Передвигая среднюю катушку по каркасу, добейтесь наибольшей громкости. Если включение катушки обратной связи не дает увеличения громкости, поменяйте местами (перепаяйте) концы К5 и К6 катушки обратной связи. А если при включении катушки обратной связи появляется резкий свист, уменьшите число витков в этой катушке. После окончательной наладки закрепите катушки каплей клея и монтируйте приемник в фанерном ящике.

Из журнала "Юный техник" за май 1957 года

Ламповый радиоприемник Heathkit SB-300, фотоотчет об устройстве и основных узлах.

В далеком уже 2011 году мне подвернулась возможность приобрести ламповый коротковолновый радиоприемник Heathkit SB-300 производства американской компании Heath Company.

Сейчас уже позабытая, эта компания в 50-60-е годы прошлого столетия была одним из мировых лидеров по производству оборудования для любительской коротковолновой радиосвязи, а также измерительного оборудования и многого другого. Причем, аппаратура выпускалась как готовая, так и виде наборов (kit) для самостоятельной сборки. Штаб квартира компании находилась в Benton Harbor, штат Michigan, USA.

Коротковолновый ламповый радиоприемник Heathkit SB-300 принадлежал к так называемой SB серии, которая включала в себя еще ряд моделей радиоприемников и передатчиков для любительской коротковолновой связи. Выпускался этот приемник ориентировочно с 1963 по 1967 годы.

Как уже указывалось, приобрел я этот приемник аж в 2011 году. Он продавался в состоянии «работоспособность неизвестна». Сразу после приобретения включить и проверить работоспособность не представлялось возможным, поскольку этот приемник предназначен для питания от сети 120 В, то есть нужно было городить понижающий трансформатор. Все было отложено на «потом», как всегда.

Аж в 2017 году дошли руки и до этого изделия.

Краткие технические характеристики.

Коротковолновый ламповый радиоприемник Heathkit SB-300-это десятиламповый супергетеродин с двойным преобразованием частоты, предназначенный для приема любительских радиостанций в следующих диапазонах частот:

80м : 3500-4000 кГц;

40м : 7000-7500 кГц;

20м : 14000-14500 кГц;

15м : 21000-21500 кГц;

10м : 28500-30000 кГц;

Чувствительность менее 1 мкВ.

Первая промежуточная частота переменная: 8,395-8,895 МГц. Вторая промежуточная частота- 3395 кГц. ГПД работает в диапазоне 5,0-5,5 МГц.

В качестве фильтров основной селекции применены кварцевые фильтры на частоту 3395 кГц:

Для приема SSB сигналов с полосой пропускания 2,1 кГц;

Для приема АМ сигналов с полосой пропускания 3,75 кГц;

Для приема CW сигналов с полосой 400 Гц;

Как видно из основных технических характеристик это был очень даже неплохой аппарат, как для середины 60-х годов прошлого столетия.

Внешний вид моего экземпляра Heathkit SB-300:

Конструктив выполнен в традиционных для Heath Company цветах: темно-зеленая передняя панель и светло-серый корпус с заокругленными углами.

Описание основных узлов и блоков радиоприемника Heathkit SB-300.

Ламповый радиоприемник Heathkit SB-300, блок-схема:

Инструкция по эксплуатации, сборке, настройке и принципиальная схема находится

Заглянем внутрь радиоприемника…

Это вид сверху. Пришлось немного почистить шасси от накопившейся пыли и мусора. Кое-где видны пятна коррозии..

Силовой трансформатор заключен в металлический кожух:

Шкала настройки, деления нанесены через один килогерц:

Отмечу, что все детали и компоненты в приемнике оригинальные.

Переключатель АРУ, отчетливо видно название страны-изготовителя:

Блок ГПД выполнен очень добротно. Забегая наперед скажу, что выбег частоты этого ГПД после включения от силы 100 Гц на протяжении полминуты, после чего частота стабильна.

Это телеграфный (CW) кварцевый фильтр:

АМ кварцевого фильтра в моем экземпляре приемника нет. Вот посадочное место для него:

Все контура (входной, анодный УВЧ, анодный 1-го кварцевого гетеродина) спрятаны под общим экраном:

Вот так выглядят контуры, которые прятались под экраном:

Видны подстроечные сердечники со сквозным шестигранным отверствием.

В уголке красуется лейбл фирмы-изготовителя:

Конденсатор переменной емкости преселектора имеет четыре секции:

Кварцевые резонаторы первого гетеродина. Обратите внимание на их экзотические частоты:

Лампа типа 6AS11 и кварцы третьего гетеродина. Кварцевый резонатор на частоту 3393,6 кГц применяется при приеме сигналов телеграфных, и с нижней боковой полосой, резонатор на частоту 3396,4 кГц применяется при приеме сигналов с верхней боковой полосой:

Лампа 6AS11 очень интересна- это пальчиковая 11-ти штырьковая радиолампа, имеет в своем составе два триода и пентод. На ней собраны собственно третий гетеродин, SSB детектор и усилитель сигнала 3-го гетеродина.

Плата УВЧ, смесителей и первого гетеродина:

Плата двухкаскадного УПЧ-II и оконечного УНЧ:

Лампа кварцевого калибратора и кварцевый резонатор на частоту 100 кГц:

Подвал шасси приемника, несмотря на полувековой возраст его, оказался очень чистым:

Вид на монтаж приемника, в нижнем левом углу притаился небольшой выходной трансформатор УНЧ, видны три цилиндрических электролитических конденсатора емкостью 20 мкФ х 150 В:

Галетный переключатель диапазонов:

Радиоприемник Heathkit SB-300 выпускался как собранный и полностью готовый к эксплуатации, так и в виде набора для самостоятельного изготовления. Судя по качеству монтажа, мой экземпляр приемника изготовлен в заводских условиях.

На задней панели размещены:

Выходные разьемы всех гетеродинов и октальная фишка подключения конвертеров (на 50 МГц и на 144 МГц):

— разьемы для подключения антенны, динамика и другие:

Сетевой разьем для подключения к сети 120в, согласно стандарту США:

Конец первой части.

Во второй части будет изложен процесс оживления приемника и некоторых модернизациях.

Видео о работе радиоприемника Heathkit SB-300 на диапазоне 3,5 МГц:

Видео о работе радиоприемника Heathkit SB-300 на диапазоне 7 МГц:

Простой супергетеродинный приемник начинающего коротковолновика (рис. 1) не требует каких-либо дефицитных деталей, практически не вызывает затруднений при налаживании и обеспечивает прием значительного числа любительских KB радиостанций, работающих телефоном и телеграфом в диапазонах 3,5; 7, 14; 21 и 28 МГц.

Для облегчения изготовления приемника радиолюбителями, не имеющими достаточного опыта в сборке подобных устройств, в схеме сделан ряд упрощений. Так, например, входные контуры при приеме радиостанций не перестраиваются, в тракте промежуточной частоты применен одиночный контур. Единственным органом настройки на принимаемую радиостанцию является переменный конденсатор, включенный в контур гетеродина. Увеличение чувствительности приемника достигнуто благодаря применению положительной обратной связи в сеточном детекторе, которая при приеме телеграфных сигналов выбирается выше критической.
Приемник содержит преобразователь частоты, сеточный детектор и двухкаскадный усилитель низкой частоты.
Как видно из схемы, в приемнике применена емкостная связь с антенной, которая осуществляется с помощью конденсатора С1. В зависимости от диапазона, в котором ведется прием радиостанций, в цепь сигнальной сетки лампы Л1, работающей в преобразовательном каскаде, контактной группой В1а переключателя В1 включается один из колебательных контуров L1C2, L2C3, L3C4, L4C5, L5C6. Каждый контур настроен конденсаторами С2 - С6 на среднюю частоту соответствующего диапазона.
Гетеродинная часть преобразователя собрана по трехточечной схеме с автотрансформаторной обратной связью. Колебательный контур гетеродина L6C7C15, L7C8C15, L8C9C15, L9C10C15 или L10C11C15, включается в цепь преобразовательной лампы контактными группами В16, Ble переключателя В1.

Нагрузкой преобразовательной лампы является контур L11C13, настроенный на промежуточную частоту 1600 кГц. На этом контуре выделяется напряжение промежуточной частоты (полученное а результате преобразования принятого сигнала), которое через разделительный конденсатор С19 подается на вход сеточного детектора.
Сеточный детектор работает на лампе Л2. Составляющая тока промежуточной частоты, которая имеется в анодной цепи, замыкается на катод лампы через конденсаторы С17, С18 и катушку обратной связи L12, индуктивно связанную с катушкой L11 контура промежуточной частоты.
В результате этого между сеточной и анодной цепями лампы Л2 образуется положительная обратная связь. Действие положительной обратной связи приводит к тому, что общее напряжение, поступающее на вход детектора, увеличивается, а это равноценно повышению чувствительности и избирательности всего приемного устройства.
Величина обратной связи регулируется переменным резистором R8, изменяющим постоянное напряжение на экранирующей сетке лампы Л2.
Чем больше это напряжение, тем больше крутизна лампы, а следовательно, и величина положительной обратной связи. При приеме радиостанций, работающих телефоном, величину обратной связи следует устанавливать близкой к критической; при приеме станций, работающих телеграфом, - выше критической.
В результате процесса детектирования на резисторе R6, включенном в цепь анода лампы L2, выделяется напряжение низкой частоты.
Это напряжение через разделительный конденсатор С21 подается на вход предварительного каскада усиления низкой частоты, который смонтирован по обычной схеме на триодной части лампы ЛЗ.

Выходной каскад собран по трансформаторной схеме на пентодной части лампы Л3. Напряжение низкой частоты на вход этого каскада подается с движка переменного резистора R14, выполняющего функции регулятора громкости. Связь между предварительным и выходным каскадами усиления низкой частоты осуществляется через конденсатор С24. В цепь вторичной обмотки выходного трансформатора могут быть включены низкоомные телефоны Тф1 либо динамическая головка Гр1. При желании вести прием только на телефоны динамическая головка может быть отключена выключателем В2.
Следует отметить, что усилитель низкой частоты обеспечивает несколько большую мощность на выходе, чем это требуется для обычного приемника, предназначенного для приема любительских KB радиостанций. Вызвано это тем, что низкочастотная часть приемного устройства рассчитана для работы от звукоснимателя с блоком тон-коррекции и для повышения выходной мощности транзисторного приемника.
Катушки индуктивности наматывают на полистироловых или картонных каркасах. Последние перед намоткой покрывают бакелитовым лаком.
Диаметр каркасов - 10 мм. Размеры и данные катушек приведены на рис. 2. Катушку обратной связи L12 наматывают на кольцо (изготовленное из плотной бумаги), которое должно иметь возможность передвигаться по основному каркасу относительно катушки L11.
Расстояние между катушками L11 и L12 подбирают опытным путем при налаживании приемника.
Каркас с катушками L11, L12 располагают в медном или алюминиевом экране.
Для сердечника СЦР-1 длиной 10 мм надо предусмотреть в верхней части каркаса резьбу, (Мб). Если каркас для указанных катушек выполнен из картона, то с противоположных сторон каркаса на расстоянии 5 мм от его края прорезают два прямоугольных отверстия шириной 5 мм.
Затем на это место в один слой наматывают толстую нитку так, чтобы витки были расположены над прорезями. Эти витки и будут выполнять роль резьбы для сердечника. В крышке экрана нужно предусмотреть отверстие для отвертки. С помощью сердечника производится настройка контура L11C13.

Переменный конденсатор С15 изготавливают на базе подстроечного конденсатора (КПЕ) с максимальной емкостью 15 - 25 пФ (удлиняют ось, на которой располагаются роторные пластины) или на базе фабричного конденсатора переменной емкости с максимальной емкостью 450 - 500 пФ.
В последнем случае у конденсатора срезают все пластины, кроме двух - одной подвижной и одной неподвижной. Для удобства настройки конденсатор С15 следует сочленить с простейшим верньерным устройством.
Переключатель В1 - галетного типа, желательно керамический, двухплатный, на четыре направления (используются только три).
Выключатель В2 - типа ТВ2-1. Трансформатор Tp1 выполнен на сердечнике Ш12, толщина набора 25 мм. Обмотка I содержит 3500 витков провода ПЭЛ 0,14, обмотка II - 100 витков провода ПЭЛ 0,64. Практически в конструкции можно применить выходной трансформатор от любого лампового вещательного приемника с выходной мощностью более 0,5 Вт, работающего на нагрузку около 5 - 10 Ом.
Приемник монтируется на П-образном шасси размером 210X180X60 мм, к которому прикрепляется вертикальная панель размером 210X200 мм.
Шасси и панель изготавливаются из дюралюминия толщиной 1 мм. Размеры шасси зависят от габаритов используемых деталей (переключателя, переменного конденсатора, верньера и других). На верхней горизонтальной части шасси располагают входные и гетеродинные контуры, контур L11C13 с катушкой обратной связи L12, конденсатор С28, ламповые панели. Входные и гетеродинные контуры устанавливают около соответствующих плат переключателя Bl (Вla, В1б, Ble), которые экранируют друг от друга. На передней панели устанавливают переключатель диапазонов В1, выключатель В2, гнезда для телефонов, переменные резисторы R8, R14 и ручку верньерного устройства конденсатора переменной емкости С15 со шкальным устройством.

Колодку питания, гнезда для включения антенны, заземления, звукоснимателя и динамической головки устанавливают на задней стенке шасси.
Приемник можно питать от любого выпрямителя, обеспечивающего на выходе напряжение около 200 - 230 В при токе 40 - 50 мА.
Учитывая, что в схеме приемника не требуется сопряжение настроек входных и гетеродинных контуров, налаживание конструкции значительно упрощается. Прежде всего проверяют, не допущены ли ошибки в монтажной схеме, нет ли короткого замыкания в цепях накала и анодно-экранного напряжения. Низкочастотную часть приемника проверяют с помощью звукоснимателя, путем проигрывания грампластинок.
При проверке детекторного каскада следует учесть, что в исправно работающем детекторе поворот ручки переменного резистора R8 на 80 - 90° должен приводить к возникновению собственных колебаний с частотой настройки контура L11C13. Если колебания не возникают, следует уменьшить расстояние между катушками L11 и L12. При отсутствии колебаний и в этом случае необходимо переключить выводы у катушки L12.
Подбором величины конденсатора С18 и расстояния между катушками L11, L12 нужно добиться плавного подхода к порогу генерации при изменении напряжения на экранирующей сетке лампы Л2.

Регулировка преобразовательного каскада сводится в основном к настройке контура L11C13 на частоту 1600 кГц и проверке устойчивости работы гетеродина. Для этой настройки необходимо выход сигнал-генератора подсоединить к гнездам Гн1, Гн2, разорвать цепь входных контуров в точке «а», включить между сигнальной сеткой лампы Л1 и шасси резистор 100 кОм и установить по шкале СГ частоту 1600 кГц.
Вращением сердечника катушки L11 добиваются максимальной громкости сигнала на выходе приемника. Обратная связь переменным резистором R8 устанавливается близкой к критической, а регулятор громкости R14 - в среднее положение.
Затем восстанавливают входную цепь и проверяют работоспособность гетеродина в пределах каждого диапазона. Если гетеродин работает, то периодическое замыкание конденсатора С15 должно вызывать уменьшение постоянного напряжения на экранирующей сетке лампы Л1, которое
измеряют высокоомным вольтметром. При неустойчивой работе гетеродина на отдельных диапазонах надо более тщательно подобрать место присоединения катода (через цепь R2C16) к одной из катушек L6 - L10.
Установка границ частоты гетеродина и настройка входных контуров на среднюю частоту диапазона производится по общепринятой методике подстроенными конденсаторами С7 - С11 и С2 - С6, а в случае необходимости - изменением числа витков катушек индуктивности L6 - L10 и L1 - L5.
Работая на наружную антенну, приемник обеспечивает прием значительного числа любительских KB радиостанций.



Похожие статьи
  • Сонник: к чему снится Ругаться

    Ругаться по соннику эзотерика Е.Цветкова Ругаться – Браниться с кем-то – досада; слышать ругань – официальная церемония; с женой, мужем – см. Жена, муж.Ругаться – Досада. Сонник Странника (Терентия Смирнова) Толкование Ругались из вашего сна...

    Проектирование
  • Последние дни Lehman Brothers Леман братья

    В конце сентября на киноэкраны выходит фильм Margin Call (в российском прокате - «Предел риска») о мировом экономическом кризисе 2008 года и крахе инвестиционного банка Lehman Brothers.Фильм состоит из восьми новелл: восемь сотрудников Lehman...

    Канализация
  • Химический состав клетки - какой он?

    В состав живой клетки входят те же химические элементы, которые входят в состав неживой природы. Из 104 элементов периодической системы Д. И. Менделеева в клетках обнаружено 60.Их делят на три группы:основные элементы - кислород, углерод, водород и...

    Трубы и фитинги