Схема простого стабилизатора постоянного напряжения на опорном стабилитроне и транзисторе. Схемы стабилизаторов напряжения Почему стабилизатор напряжения назван параметрическим

16.09.2023

Как известно, ни одно электронное устройство не работает без подходящего источника питания. В самом простейшем случае, в качестве источника питания может выступать обычный трансформатор и диодный мост (выпрямитель) со сглаживающим конденсатором. Однако, не всегда под рукой есть трансформатор на нужное напряжение. Да и тем более, такой источник питания нельзя назвать стабилизированным, ведь напряжение на его выходе будет зависеть от напряжения в сети.
Вариант решения этих двух проблем – использовать готовые стабилизаторы, например, 78L05, 78L12. Они удобны в использовании, но опять-таки не всегда есть под рукой. Ещё один вариант – использовать параметрический стабилизатор на стабилитроне и транзисторе. Его схема показана ниже.

Схема стабилизатора

VD1-VD4 на этой схеме – обычный диодный мост, преобразующий переменное напряжение с трансформатора в постоянное. Конденсатор С1 сглаживает пульсации напряжения, превращая напряжение из пульсирующего в постоянное. Параллельно этому конденсатору стоит поставить плёночный или керамический конденсатор небольшой ёмкости для фильтрации высокочастотных пульсаций, т.к. при большой частоте электролитический конденсатор плохо справляется со своей задачей. Электролитические конденсаторы С2 и С3 в этой схеме стоят с этой же целью – сглаживание любых пульсаций. Цепочка R1 – VD5 служит для формирования стабилизированного напряжения, резистор R1 в ней задаёт ток стабилизации стабилитрона. Резистор R2 нагрузочный. Транзистор в этой схеме гасит на себе всю разницу входного и выходного напряжения, поэтому на нём рассеивается приличное количество тепла. Данная схема не предназначена для подключения мощной нагрузки, но, тем не менее, транзистор стоит прикрутить к радиатору с использованием теплопроводящей пасты.
Напряжение на выходе схемы зависит от выбора стабилитрона и значения резисторов. Ниже показана таблица, в которой указаны номиналы элементов для получения на выходе 5, 6, 9, 12, 15 вольт.


Вместо транзистора КТ829А можно использовать импортные аналоги, например, TIP41 или BDX53. Диодный мост допустимо ставить любой, подходящий по току и напряжению. Кроме того, можно собрать его из отдельных диодов. Таким образом, при использовании минимума деталей получается работоспособный стабилизатор напряжения, от которого можно питать другие электронные устройства, потребляющие небольшой ток.

Фото собранного мной стабилизатора:


Параллельный параметрический стабилизатор, последовательный стабилизатор на биполярном транзисторе. Практические расчеты.

Доброго дня уважаемые Радиолюбители!
Сегодня на сайте “ “, в разделе “ “, мы продолжим рассмотрение статьи “ “. Напомню, что в прошлый раз, изучая схему источника питания радиолюбительских устройств, мы остановились на назначении и расчете сглаживающего фильтра:

Сегодня мы рассмотрим последний элемент – стабилизатор напряжения.

Стабилизатор напряжения - преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при колебаниях входного напряжения и сопротивления нагрузки

Сегодня мы рассмотрим два простейших стабилизатора напряжения:
- параллельный параметрический стабилизатор напряжения на стабилитроне;
– последовательный стабилизатор напряжения на биполярном транзисторе.

Полупроводниковый стабилитрон - (другое название – диод Зенера) предназначен для стабилизации постоянного напряжения источников питания. В простейшей схеме линейного параметрического стабилизатора он выступает одновременно и источником опорного напряжения, и силовым регулирующим элементом. В более сложных схемах ему отводится только роль источника опорного напряжения.

Один из внешних видов и обозначение стабилитрона:

Как работает стабилитрон

Напряжение на стабилитрон (в отличие от диода) подают в обратной полярности (анод соединяют с минусом а катод с плюсом источника питания – Uобр ). При таком включении через стабилитрон течет обратный ток – Iобр .
При увеличении напряжения обратный ток растет очень медленно (на схеме, почти параллельно оси Uобр ), но при некотором напряжении Uобр переход стабилитрона пробивается (но разрушение стабилитрона в этот момент не происходит) и через него начинает идти обратный ток значительно большего значения. В этот момент вольтамперная характеристика стабилитрона (ВАХ ) резко идет вниз (почти параллельно оси Iобр ) – наступает режим стабилизации, основные параметры которого – напряжение стабилизации минимальное (Uст min ) и ток стабилизации минимальный (Iст min ).
При дальнейшем увеличении Uобр ВАХ стабилитрона опять меняет свое направление – заканчивается режим стабилизации, основные параметры которого – напряжение стабилизации максимальное (Uст max ) и ток стабилизации максимальный (Iст max ). С этого момента стабилитрон теряет свои свойства, начинает разогреваться, что может привести к тепловому пробою перехода стабилитрона и соответственно к его выходу из строя.

Режим стабилизации стабилитрона может быть в широких пределах, поэтому в документации на стабилитроны указывают допустимые минимальные и максимальные значения токов (Iст min и Iст max ) и напряжений стабилизации (Uст min и Uст max ). Внутри этих диапазонов лежат выбранные производителем номинальные значения Iст и Uст . Номинальный ток стабилизации обычно устанавливается производителями на уровне 25%-35% от максимального, а номинальное значение напряжения стабилизации как среднее от максимального и минимального.

Для примера можно воспользоваться программой “ “ и воочию посмотреть какие характеристики приводятся в справочниках по стабилитронам:

К примеру стабилитрон Д814Г:
- номинальный ток стабилизации (Iст)= 5 мА;
– номинальное напряжение стабилизации (Uст)= (от 10 до 12 вольт)= 11 вольт;
– максимальный ток стабилизации (Iст max)= 29 мА.
Эти данные нам будут необходимы при расчетах простейшего стабилизатора напряжения.

Если вы не смогли найти нужный наш родной, советский, стабилитрон, то можно используя, к примеру программу, подобрать по нужным параметрам буржуйский аналог:

Как видите, стабилитрон Д814Г легко можно заменить аналогом – BZX55C11 (у которого характеристики даже немного получше)

Ну а теперь рассмотрим параллельный параметрический стабилизатор напряжения на стабилитроне .

Параллельный параметрический стабилизатор напряжения на стабилитроне применяется в слаботочных устройствах (несколько миллиампер) и представляет собой делитель напряжения (на резисторе R – балластный резистор и стабилитроне VD – который выполняет роль второго резистора) на вход которого подается нестабильное напряжение а выходное напряжение снимается с нижнего плеча делителя. При повышении (понижении) входного напряжения внутреннее сопротивление стабилитрона уменьшается (увеличивается), что позволяет удерживать выходное напряжение на заданном уровне. На балластном резисторе падает разница между входным напряжением питания и напряжением стабилизации стабилитрона.

Рассмотрим схему данного (самого простейшего) стабилизатора напряжения:

Для нормальной работы схемы ток через стабилитрон должен в несколько раз (3-10 раз) превышать ток в стабилизируемой нагрузке. Практически, так-как номинальный ток стабилизации стабилитрона в несколько раз меньше максимального, то допускается при расчетах считать, что ток нагрузки не должен превышать номинального тока стабилизации.
К примеру : ток потребляемый нагрузкой составляет 10 мА, значит нам необходимо подобрать такой стабилитрон, чтобы его номинальный ток стабилизации не был меньше 10 мА (лучше конечно, если он будет больше).

Расчет параллельного параметрического стабилизатора напряжения на стабилитроне

Дано:
Uвх – входное напряжение = 15 вольт
Uвых – выходное напряжение (напряжение стабилизации) = 11 вольт

Расчет:
1. По справочнику, приведенному выше, определяем, что для наших целей подходит стабилитрон Д814Г:
Uст (10-12в)= 11 вольт
Iст max = 29 мА
Iст номинальный = 5 мА
Исходя из сказанного выше, определяемся, что ток нагрузки не должен превышать Iст номинального – 5 мА
2. Определяем напряжение падения на балластном резисторе (R) как разность входного и выходного стабилизированного напряжения:
Uпад=Uвх – Uвых =15-11= 4 вольта
3. Используя закон Ома, определяем номинал балластного сопротивления R, деля напряжение падения Uпад на Iст стабилитрона:
R= Uпад/Iст = 4/0,005= 800 Ом
Так как резисторов номиналом 800 Ом нет, берем ближайший больший номинал – R=1000 Ом= 1 кОм
4. Определяем мощность балластного резистора R :
Pрез= Uпад*Iст = 4*0,005= 0,02 ватта
Так как через резистор протекает не только ток стабилизации стабилитрона но и ток потребляемый нагрузкой, то полученное значение увеличиваем минимум в 2 раза:
Pрез = 0,004*2= 0,008 ват, что соответствует ближайшему номиналу = 0,125 ватт.

Что делать если вы не нашли стабилитрон с нужным напряжением стабилизации.
В этом случае можно применить последовательное соединение стабилитронов . К примеру, если мы соединим последовательно два стабилитрона Д814Г, то напряжение стабилизации составит 22 вольта (11+11). Если соединим Д814Г и Д810 то получим напряжение стабилизации 20 вольт (11+10).
Допускается любое число последовательного соединения стабилитронов одной серии (как в примере – Д8**).
Последовательное соединение стабилитронов разной серии допускается только в том случае, если рабочие токи последовательной цепочки укладываются в паспортные диапазоны токов стабилизации каждой использованной серии.

Что делать, если в приведеном выше примере, ток нагрузки составляет к примеру не 5 а 25 мА?
Можно конечно все так и оставить, так как максимальный ток стабилизации (Iст max) Д814Г равен 29 мА, единственное придется пересчитать мощность балластного резистора. Но в этом случае стабилитрон будет работать на пределе своих возможностей и у вас не будет никаких гарантий, что он не выйдет из строя.
А что делать если ток нагрузки составляет, к примеру, 50 мА?

Последовательный стабилизатор напряжения на биполярном транзисторе – это по сути параллельный параметрический стабилизатор на стабилитроне, подключенный ко входу эммитерного повторителя.

Его выходное напряжение меньше напряжения стабилизации стабилитрона за счет падения напряжения на переходе база-эммитер транзистора (для кремниевых транзисторов – около 0,6 вольт, для германиевы – окло 0,25 вольт), что нужно учитывать при выборе стабилитрона.
Эммитерный повторитель (он же – усилитель тока) позволяет увеличить максимальный ток стабилизатора напряжения по сравнению с параллельным параметрическим стабилизатором на стабилитроне в β (h 21э) раз (где β (h21э) – коэффициент усиления по току данного транзистора, берется наименьшее значение).

Схема последовательного стабилизатора на биполярном транзисторе :

Так-как данный стабилизатор состоит из двух частей – источник опорного напряжения (он же параллельный параметрический стабилизатор на стабилитроне) и усилителя тока на транзисторе (он же эммитерный повторитель), то расчет такого стабилизатора производится аналогично выше приведенному примеру.
Единственное отличие:
- к примеру нам надо получить ток нагрузки 50 мА, тогда выбираем транзистор с коэффициентом усиления β (h 21э) не менее 10 (β (h 21э) =Iнагрузки/Iст=50/5=10
– мощность балластного резистора рассчитываем по формуле: Ррез=Uпад*(Iст+Iнагрузки)

Ток нагрузки можно увеличить еще в несколько раз, если применить схему с составным тразистором (два транзистора, включенные по схеме Дарлингтона или Шиклаи):

Вот, в принципе, и все.

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно:-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.

Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока , напряжение , частота сигнала и . Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение . От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон . Иногда его еще называют диодом Зенера . На схемах стабилитроны обозначаются примерно так:

Вывод с “кепочкой” называется также как и у диода – катод , а другой вывод – анод .

Стабилитроны выглядят также, как и диоды . На фото ниже, слева популярный вид современного стабилитрона, а справа один из образцов Советского Союза


Если присмотреться поближе к советскому стабилитрону, то можно увидеть это схематическое обозначение на нем самом, указывающее, где у него находится катод, а где анод.


Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой…

Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это понятно и дошкольнику.

Теперь по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.

Так вот, дорогие читатели, в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит, напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:


Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.


Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:


5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой


Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и ! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого .


Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.


Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:


где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения . Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл;-)

Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем Блок питания , а справа замеряем мультиметром полученное напряжение:


Теперь внимательно следим за показаниями мультиметра и блока питания:


Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.


Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!


Еще добавляем… Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.


Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:


где

Iпр – прямой ток, А

Uпр – прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр – обратное напряжение, В

Uст – номинальное напряжение стабилизации, В

Iст – номинальный ток стабилизации, А

Номинальный – это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.

Imax – максимальный ток стабилитрона, А

Imin – минимальный ток стабилитрона, А

Iст, Imax, Imin это сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.


Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря, он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне. Самое главное – не переборщить силу тока, больше чем Imax , иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим, при котором сила тока через стабилитрон находится где-то в середине между максимальным и минимальным его значением. На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).


Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения . В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:


Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного . Справа же, в зеленой рамке, схема стабилизации;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт. Выбирайте на ваш вкус и цвет.


Электропитание маломощных устройств РЭС с небольшим пределом изменения тока потребления обычно осуществляется от параметрических стабилизаторов напряжения (ПСН). Кроме того, эти стабилизаторы широко используются в качестве источников опорного напряжения (ИОН) в компенсационных стабилизаторах напряжения и тока.

Параметрический стабилизатор осуществляет стабилизацию выходного напряжения за счет свойств вольтамперных характеристик нелинейного элемента, например стабилитрона, стабис-тора, дросселя насыщения. Структурная схема параметрического стабилизатора приведена на рис. 15.1. В ней нелинейный элемент НЭ подключен к входному питающему напряжению?/ 0 через гасящий резистор /?„ а параллельно НЭ включена нагрузка Я н. При увеличении входного напряжения?/ 0 ток через нелинейный элемент НЭ увеличивается, в результате этого возрастает падение напряжения на гасящем резисторе так, что выходное напряжение на нагрузке остается постоянным. Стабильность выходного напряжения в параметрическом стабилизаторе определяется наклоном вольтамперной характеристики НЭ и является невысокой. В параметрическом стабилизаторе нет возможности плавной регулировки выходного напряжения и точной установки его номинала.

Как отмечалось, для стабилизации постоянного напряжения в ПСН применяются элементы с нелинейной ВАХ. Одним из таких элементов является кремниевый стабилитрон. Основная схема однокаскадного ПСН приведена на рис. 15.2.

Рис. 15.1

Рис. 15.2. Схема однокаскадного параметрического стабилизатора

В этой схеме при изменении входного напряжения и т на ±Д С/ т ток через стабилитрон VI) изменяется на А/ ст, что приводит к незначительным изменениям напряжения на стабилитроне (на ±Д?/„), а следовательно, и на нагрузке. Значение Д{/ н зависит от Д?/ вх, сопротивления ограничивающего резистора Я т и

ди ст

дифференциального сопротивления стабилитрона г ст = --.

д1 ст

На рис. 15.3 приведен пример статической характеристики стабилизатора для пояснения принципа стабилизации и определения коэффициента стабилизации.

Коэффициент стабилизации (по входному напряжению) схемы ПСН нарис. 15.2 и характеристикам на рис. 15.3 представляется как

А и к и т

и, „ « г

Внутреннее сопротивление стабилизатора определяется в основном дифференциальным сопротивлением стабилитрона. На рис. 15.4 приведены зависимости г ст маломощных стабилитронов от напряжения стабилизации для различных токов стабилизации / сх. Из графиков видно, что при увеличении / ст дифференциальное сопротивление уменьшается и достигает

минимального значения для стабилизации 6-8 В.

стабилитронов с напряжением

Рис. 15.4.

Рис. 15.5.

Температурный коэффициент напряжения а н стабилитрона определяет величину отклонения выходного напряжения ПСН при изменении температуры. На рис. 15.5 приведена зависимость а н от напряжения стабилизации. Для приборов с и ст > 5,5 В при повышении температуры напряжение на стабилитроне возрастает. Поэтому температурная компенсация в этом случае может быть достигнута включением последовательно со стабилитроном диодов в прямом направлении (У0 2 , К/) 3 на рис. 15.6, а).

Однако при этом возрастает внутреннее сопротивление ПСН за счет дифференциальных сопротивлений термокомпенсирующих диодов в прямом направлении г диф, которое зависит от выбранного типа диода и режима его работы. В качестве примера на рис. 15.7 приведены зависимости г диф от прямого тока для не-


Рис. 15.6.

а - с термокомпенсирующими диодами К/) 2 , К/) 3 ; б - двухкаскадного стабилизатора; в - мостового стабилизатора с одним стабилитроном; г - мостового стабилизатора с двумя стабилитронами; д - стабилизатора с эмиттерным повторителем; е - с токостабилизирующим двухполюсником; ж - с токостабилизирующими транзисторами различной проводимости п-р-п ир-п-р

которых типов диодов и стабилитронов, включенных в прямом направлении. Необходимо отметить, что термокомпенсированный ПСН имеет повышенное значение г ст и пониженный коэффициент стабилизации. На рис. 15.8 приведены зависимости температурного коэффициента от величины прямого тока для стабилитронов типа Д814 и диода ДЗ10, которые могут быть использованы для температурной компенсации.

Если требуется повышенная стабильность выходного напряжения ПСН, то применяются двухкаскадные или мостовые схемы стабилизаторов, приведенные на рис. 15.6, б , в, г. Предварительная стабилизация напряжения в двухкаскадных ПСН (рис. 15.6, б), осуществляемая с помощью элементов Я г, УЕ) и Г/) 2 , позволяет получить достаточно высокий коэффициент стабилизации выходного напряжения

Я Г Я г2

к = к к ~ -1Л__ г| _

ст2к К ст1 К ст2 у,)(у

^ нх "ст1 " *ст2/"стЗ " "ст4 " "ст5 /

где к ст, к ст2 - коэффициенты стабилизации первого и второго каскадов; г стЬ г ст2 - дифференциальные сопротивления стабилитронов -КТ> 3 ; а*ст4, ^ст5 - дифференциальные сопротивления

диодов Уй 4, Г/) 5 . Температурный уход напряжения на нагрузке и внутреннее сопротивление двухкаскадного ПСН такие же, как в схеме на рис. 15.6, а.

Рис. 15.7.

от прямого тока

Рис. 15.8.

от прямого тока

Повышение коэффициента стабилизации в мостовых схемах (рис. 15.6, в , г) достигается за счет компенсирующего напряжения, возникающего на резисторе R 2 или стабилитроне VD при изменениях входного напряжения. Коэффициент стабилизации при R H = const:

для схемы рис. 15.6, в

и»

U,Ar„/R 3 -R 2 /R,y

где U H - напряжение на нагрузке R„;

для схемы на рис. 15.6, г

где г ст і и г ст 2 - дифференциальные сопротивления стабилитронов уЬ и уо 2 .

В мостовых параметрических стабилизаторах теоретически коэффициент стабилизации может быть бесконечно большим, если выбрать элементы, исходя из условий: для рис. 15.6, в г ст /Я 3 = R 2 /R а для схемы на рис. 15.6, г г ст2 /Я 2 = г ст /Я. Внутреннее сопротивление для схемы на рис. 15.6, в г н = г С1 + Я 2 , а для схемы на рис. 15.6, г

Г н Гст1+ Г -т2-

Следует отметить, что относительно высокая стабильность выходного напряжения в схемах ПСН на рис. 15.6, б-г достигается за счет значительного ухудшения КПД по сравнению со схемой на рис. 15.3. Повысить стабильность выходного напряжения ПСН без ухудшения КПД позволяет схема на рис. 15.6, е за счет применения в ней источника тока, выполненного на транзисторе УТ, стабилитроне У[) (вместо которого могут быть включены два диода, последовательно соединенных в прямом направлении) и резисторах Я э и /? б. Это позволяет стабилизировать ток, протекающий через стабилитрон У1) 2 и тем самым резко уменьшить отклонения напряжения на нагрузке при больших изменениях входного напряжения. Температурный уход и внутреннее сопротивление этой схемы ПСН практически такие же, как в схеме на рис. 15.2.

Максимальная выходная мощность рассмотренных схем ПСН ограничивается предельными значениями тока стабилизации и рассеиваемой мощности стабилитрона. Если использовать транзистор в режиме эмиттерного повторителя со стабилитроном в базовой цепи (рис. 15.6, д ), то мощность нагрузки может быть увеличена. Коэффициент стабилизации ПСН на рис. 15.6, д

  • (15.5)
  • (15.6)

к - * и -

" (1 + цг ст /А 0)?/ и ’

а внутреннее сопротивление

/?(/)« р(г э +/* б /Л 21э);

г б, г э, И 2 э - соответственно сопротивления базы, эмиттера, коллектора и коэффициент передачи тока в схеме ОЭ транзистора.

Однако такой ПСН при 1/ ст > 5,5 В по температурному уходу уступает стабилизаторам, приведенным на рис. 15.6, а-г.

На рис. 15.6, ж приведена схема ПСН с дополнительными транзисторами различной проводимости. Для нее характерным является высокая стабильность выходного напряжения и возможность одновременного подключения двух нагрузок /? Н | и Я н2 к различным шинам входного напряжения. По коэффициенту стабилизации и температурному уходу эта схема незначительно превосходит схему на рис. 15.6, е , а внутренние сопротивления г ст ] и г ст 2 определяются стабилитронами СД и Е/) 2 соответственно.



Чтобы подобрать стабилитрон для схемы, показанной на рис. 3, нужно знать диапазон входных напряжений U1 и диапазон изменения нагрузки R Н.

Рис. 3. Схема включения стабилитрона.

Для примера рассчитаем сопротивление R и подберём стабилитрон для схемы на рис. 3 со следующими требованиями:

Итак, для начала рассчитаем значение сопротивления R. Минимальное напряжение на входе равно 11 В. При таком напряжении мы должны обеспечить ток на нагрузке не менее 100 мА (или 0,1 А). Закон Ома позволяет определить сопротивление резистора:

R Ц = U1 МИН / I Н.МАКС = 11 / 0,1 = 110 Ом То есть цепь для обеспечения заданного тока на нагрузке должна иметь сопротивление не более 110 Ом.

На стабилитроне падает напряжение 9 В (в нашем случае). Тогда при токе 0,1 А эквивалент нагрузки: R Э = U2 / I Н.МАКС = 9 / 0,1 = 90 Ом Тогда, для того чтобы обеспечить на нагрузке ток 0,1 А, гасящий резистор должен иметь сопротивление: R = R Ц – R Э = 110 – 90 = 20 Ом С учётом того, что сам стабилитрон тоже потребляет ток, можно выбрать несколько меньшее сопротивление из стандартного ряда Е24 ). Но, так как стабилитрон потребляет небольшой ток, этим значением в большинстве случаев можно пренебречь.

Теперь определим максимальный ток через стабилитрон при максимальном входном напряжении и отключенной нагрузке. Расчёт нужно выполнять именно при отключенной нагрузке, так как даже если у вас нагрузка будет всегда подключена, нельзя исключить вероятность того, что какой-нибудь проводок отпаяется и нагрузка отключится.

Итак, вычислим падение напряжения на резисторе R при максимальном входном напряжении:

U R.МАКС = U1 МАКС – U2 = 15 – 9 = 6 В А теперь определим ток через резистор R из того же закона Ома: I R.МАКС = U R.МАКС / R = 6 / 20 = 0,3 А = 300 мА Так как резистор R и стабилитрон VD включены последовательно, то максимальный ток через резистор будет равен максимальному току через стабилитрон (при отключенной нагрузке), то есть I R.МАКС = I VD.МАКС = 0,3 А = 300 мА Нужно ещё рассчитать мощность рассеивания резистора R. Но здесь это мы делать не будем, поскольку данная тема подробно описана в статье Резисторы .

А вот мощность рассеяния стабилитрона рассчитаем:

P МАКС = I VD.МАКС * U СТ = 0,3 * 9 = 2,7 Вт = 2700 мВт Мощность рассеяния – очень важный параметр, который часто забывают учесть. Если окажется, что мощность рассеяния на стабилитроне превысит максимально допустимую, то это приведёт к перегреву стабилитрона и выходу его из строя. Хотя при этом ток может быть в пределах нормы. Поэтому мощность рассеяния как для гасящего резистора R, так и для стабилитрона VD нужно всегда рассчитывать.

Осталось подобрать стабилитрон по полученным параметрам:

U СТ = 9 В – номинальное напряжение стабилизации
I СТ.МАКС = 300 мА – максимально допустимый ток через стабилитрон
Р МАКС = 2700 мВт – мощность рассеяния стабилитрона при I СТ.МАКС

По этим параметрам в справочнике находим подходящий стабилитрон. Для наших целей подойдёт, например, стабилитрон Д815В.

Надо сказать, что этот расчет довольно грубый, так как он не учитывает некоторые параметры, такие, например, как температурные погрешности. Однако в большинстве практических случаев описанный здесь способ подбора стабилитрона вполне подходит.

Стабилитроны серии Д815 имеют разброс напряжений стабилизации. Например, диапазон напряжений Д815В – 7,4…9,1 В. Поэтому, если нужно получить точное напряжение на нагрузке (например, ровно 9 В), то придётся опытным путём подобрать стабилитрон из партии нескольких однотипных. Если нет желания возиться с подбором «методом тыка», то можно выбрать стабилитроны другой серии, например серии КС190. Правда, для нашего случая они не подойдут, поскольку имеют мощность рассеивания не более 150 мВт. Для повышения выходной мощности стабилизатора напряжения можно использовать транзистор. Но об этом как-нибудь в другой раз…

И ещё. В нашем случае получилась довольная большая мощность рассеивания стабилитрона. И хотя по характеристикам для Д815В максимальная мощность 8000 мВт, рекомендуется устанавливать стабилитрон на радиатор, особенно если он работает в сложных условиях (высокая температура окружающей среды, плохая вентиляция и т.п.).

Если необходимо, то ниже вы можете выполнить описанные выше рассчёты для вашего случая



Похожие статьи