Как сделать тональный кварцевый генератор. Тональный генератор для эми. Характеристики микросхемы SLG46620V

05.07.2023

Лучше не объяснять, а сразу всё увидеть:

Забавная игрушка, не правда ли? Но увидеть – одно, а сделать своими руками – другое, так что приступим!

Схема девайса:

При изменении сопротивления между точками PENCIL1 и PENCIL2 синтезатор выдаёт мелодию различной тональности. Детали, обозначенные *, можно не устанавливать. Вместо транзистора Т1 подойдёт КТ817; BC337, вместо Q1 — КТ816; BC327. Обратите внимание, что цоколёвка транзисторов оригинала и аналогов различна. Скачать готовую печатную плату можно на сайте автора .

Буду собирать схему очень компактно (что новичкам делать не советую) на макетной плате, так что привожу свой вариант разводки схемы:

С обратной стороны всё выглядит менее аккуратно:

В качестве корпуса буду использовать кнопку от сетевого фильтра:

В корпусе:

На термоклей закрепил динамик и контактную колодку кроны:

Устройство в сборе:

Ещё мне попадалась упрощённая схема:

В принципе, всё то же самое, только пищать будет тише.

Выводы:

1) Лучше использовать карандаш 2М (двойной мягкости), рисунок будет более токопроводным.

2) Игрушка интересная, но надоела через 10 минут.

3) Раз игрушка надоела, то можно использовать её не по назначению — прозванивать цепь, определять приблизительное сопротивление на слух.

И напоследок ещё один интересный видеоролик:

На рисунке 1 изображена схема простого генератора, предназначенная в основном для проверки низкочастотной аппаратуры и определения в ней неисправностей.

Генератор имеет одну фиксированную частоту 1000Гц, значение которой выставляют резистором R1. Уровень выходного сигнала определяется положением движка резистора R13. В схеме есть система поддержки выходного сигнала на определенном уровне, состоящая из элементов VT1, VD2, R10, R11, C6. Уровень срабатывания системы автоматического поддержания выходного напряжения устанавливается с помощью резистора R11. Коэффициент гармоник этого генератора относительно велик, что бы с помощью его можно было измерять нелинейные искажения НЧ аппаратуры. Поэтому на выходе данного генератора нужно установить фильтр нижних частот – ФНЧ. Такой фильтр . В комплекте с ФНЧ данный генератор имеет очень чистый тональный сигнал с уровнем коэффициента нелинейных искажений в тысячные доли процента. Питаться генератор должен от стабилизированного источника постоянного тока с напряжением 5… 12В. Схему и рисунок печатной платы можно скачать здесь.

Выполнить генератор прерывистого тонального сигнала можно по схеме на рис. 5.3. Он позволяет управлять началом работы схемы подачей питающего напряжения на вход DA1/4. Но в тех случаях, когда для работы устройства необходимо использовать два таймера, удобнее взять микросхему, уже имеющую их в одном корпусе (см. табл. 4.2).

Рис. 5.3. Выполненный на двух таймерах генератор прерывистого сигнала

Варианты генераторов, выполненных на сдвоенном таймере, показаны на рис. 5.4 и 5.5. Включение таймера в режиме генератора симметричных импульсов (рис. 5.4, б) позволяет сократить число необходимых элементов. Эти схемы являются универсальными — имеется возможность регулировать частоту звука и интервал повторения в широком диапазоне.

На рис. 5.5 приведена схема генератора, вырабатывающего сигнал для работы звонка тёлефонного вызова с интервалами в 10 с. Для этого использован низкочастотный повышающий напряжение трансформаторе 12 до 70...100 В.

Самый простой формирователь прерывистого звукового сигнала можно выполнить и на одиночном таймере, если воспользоваться любым мигающим светодиодом. Например, светодиоды L-36B, L-56B, L-456B и некоторые другие уже имеют внутри прерыватель (они выпускаются с разным цветом свечения).

Рис. 5.4. Схемы генераторов прерывистого тонального сигнала: а — вариант 1,6 — вариант 2

Включать светодиод надо так, как это показано на рис. 5.6. В этом случае частота чередования пачек полностью зависит от параметров примененного светодиода. Обычно их период мигания находится в Интервале 0,5...1 с. Для устройств сигнализации этого вполне достаточно. Частота заполнения пачек (звуковым сигналом) зависит от номиналов элементов C1-R1.

Рис. 5.5. Схема генератора прерывистого сигнала для работы телефонного звонка

Рис. 5.6. Формирователь прерывистых пачек импульсов

Рис. 5.7. Формирователь прерывистых импульсов без использования мязадающего конденсатора

Рис. 5.10. Схема генератора НЧ сигнала с уменьшающейся частотой

Литература: Радиолюбителям: полезные схемы, Книга 5. Шелестов И.П.

Радио 1987, №5

Многоголосные ЭМИ с одним тональным генератором уже зарекомендовали себя как надёжные и практичные устройства. Однако зачастую их возможности реализуются далеко не полностью из-за особенностей используемых в них генераторов. Как правило, тональный генератор строят на основе высокостабильного кварцевого резонатора или RC-цепей. В этом случае электронное управление частотой либо исключено, либо крайне затруднено .

Описанное ниже устройство - тональный генератор, управляемый напряжением. Управляющий сигнал снимают с различных формирователей и органов управления ЭМИ. Это могут быть генераторы частотного вибрато, огибающей (для автоматического изменения строя), регуляторы глиссандо (скольжения строя) с ручным или ножным (педальным) управлением.

К особенностям генератора следует отнести высокую рабочую частоту. Использование цифровой микросхемы позволило реализовать сравнительно простой и дешёвый ГУН с рабочей частотой вплоть до 7,5...8 МГц (рис. 1). Для большинства цифровых генераторов тона с равномерно-темперированной музыкальной шкалой, состоящих обычно из 12 идентичных счётчиков с различными интервальными коэффициентами пересчёта, необходима тактовая (ведущая) частота в пределах 1...4 МГц. Поэтому характеристики генератора должны быть такими, чтобы обеспечить необходимую линейность в этих частотных пределах.

Принцип работы генератора основан на формировании регулируемых по длительности импульсов двумя замкнутыми в кольцо одинаковыми формирователями, управляемыми напряжением. Таким образом, спад импульса на выходе одного формирователя вызывает появление фронта следующего импульса на выходе другого и т. д. Работу устройства иллюстрируют временные диаграммы, показанные на рис. 2. До момента t 0 управляющее напряжение равно нулю. Это значит, что в точках А и Б установился сигнал с уровнем логического 0, поскольку вытекающий входной ток элементов DD1.1 и DD1.2 (он не превышает примерно 1,6 мА) замыкается на общий провод через резисторы R1 и R2 и малое выходное сопротивление источника управляющего напряжения. На выходе инверторов DD1.1 и DD1.2 в это время действует уровень 1, поэтому RS-триггер на элементах DD1.3 и DD1.4 установится произвольно в одно из устойчивых состояний. Предположим для определённости, что на прямом (верхнем по схеме) выходе установился сигнал 1, а на инверсном - 0.

При появлении в момент t 0 на управляющем входе некоторого положительного напряжения через резисторы R1 и R2 потечёт ток. При этом в точке А напряжение останется близким к нулю, так как ток через резистор R1 протекает на общий провод через малое сопротивление диода VD1 и выходной цепи элемента DD1.4. В точке Б напряжение будет повышаться, поскольку диод VD2 закрыт высоким уровнем с выхода элемента DD1.3. Ток через резистор R2 будет заряжать конденсатор С2 до 1,1... 1,4 В за время, зависящее от его ёмкости, сопротивления резистора R2 и значения управляющего напряжения. При увеличении U ynp увеличивается скорость зарядки конденсатора, и он заряжается до того же уровня за меньшее время.

Как только напряжение в точке Б достигнет порога переключения элемента DD1.2, на его выходе установится уровень 0, который переключит RS-триггер. Теперь на прямом выходе будет уровень 0, а на инверсном - 1. Это приведёт к быстрой разрядке конденсатора С2 и уменьшению напряжения, а конденсатор С1 начнёт заряжаться. В результате триггер снова переключится и весь цикл повторится.

Увеличение управляющего напряжения (период времени t 1 ...t 2 , рис. 2) приводит к увеличению зарядного тока конденсаторов и уменьшению периода колебаний. Так происходит управление частотой колебаний генератора. Вытекающий входной ток элементов ТТЛ складывается с током источника управляющего напряжения, что позволяет расширить пределы управляющего сигнала, так как при большом сопротивлении резисторов R1 и R2 генерация может сохраняться даже при U ynp =0. Однако этому току свойственна температурная нестабильность, что сказывается на стабильности частоты генерации. В какой-то мере повысить температурную стабильность генератора можно путём использования конденсаторов С1 и С2 с положительным ТКЕ, что будет компенсировать увеличение неуправляемого вытекающего входного тока элементов DD1.1 и DD1.2 при изменении температуры.

Период колебаний зависит не только от сопротивления резисторов R1 и R2 и ёмкости конденсаторов С1 и С2, но и от многих других факторов, поэтому точная оценка периода затруднена. Если пренебречь временными задержками сигналов в элементах DD1.1-DD1.4 и принять значение их напряжения логического 0, а также порогового напряжения диодов VD1 и VD2 равными нулю, то работу генератора можно описать выражением: T 0 =2t 0 =2RC*ln((I э R+U упр)/(I э R+U упр -U сп)), полученным на основе решения дифференциального уравнения:

dUc/dt = I э /C + (U упр -Uс)/(RC),

где R и С - номиналы времязадающих цепей; Uc - напряжение на конденсаторе С; Uсп - максимальное (пороговое) значение напряжения Uc; U ynp - управляющее напряжение; I э - среднее значение входного вытекающего тока элемента ТТЛ; t 0 - длительность импульса; Т 0 - период колебаний. Расчёты показывают, что первая из указанных формул весьма точно согласуется с экспериментальными данными при Uynp>=Uсп, при этом были выбраны средние значения: I э =1,4 мА; Uсп = 1,2 В. Кроме того, на основе анализа того же дифференциального уравнения можно прийти к выводу, что

(I э R+U упр)/(I э R+U упр -Uсп)>0,

т. е., если I э R/(I э R-Uсп)>0, то устройство работоспособно при Uynp≥0; этот вывод подтверждает и экспериментальная проверка устройства. Тем не менее наибольшая стабильность и точность работы ГУН могут быть достигнуты при Uупр ≥ Uсп = 1,2..1,4 В, т. е. в частотных пределах 0,7...4 МГц.

Практическая схема тонального генератора для полифонического ЭМИ или ЭМС показана на рис. 3. Пределы рабочей частоты (при U упр ≥ 0,55...8 В) - 0,3...4,8 МГц. Нелинейность характеристики управления (на частоте в пределах 0,3...4 МГц) не превышает 5 %.

На вход 1 подают сигнал с генератора огибающей для автоматического управления скольжением частоты звука. При незначительной глубине модуляции (5...30 % тона) достигается имитация оттенков звучания бас-гитары, а также других щипковых и ударных инструментов, у которых высота интонирования звуков в момент их извлечения немного отклоняется от нормы (обычно скачком повышается во время атаки звука и далее быстро уменьшается до своего нормального значения).

На вход 2 подают постоянное управляющее напряжение с ручного или педального регулятора глиссандо. Этот вход как раз и служит для подстройки или изменения (транспонирования) тональности в пределах двух октав, а также для скольжения по высоте аккордов или тональных звуков, имитирующих, например, тембр кларнета, тромбона или голоса.

На вход 3 подают от генератора вибрато сигнал синусоидальной, треугольной или пилообразной формы. Переменным резистором R4 регулируют уровень вибрато в пределах 0...+-0,5 тона, а также уровень девиации частоты до +-1 октавы и более при замыкании выключателя SA1. При большой частоте модуляции (5...11) Гц) и глубине +-0,5...1,5 октавы тональные звуки теряют свои музыкальные качества и приобретают характер шумового сигнала, напоминающего глухой рокот или шелест лопастей вентилятора. При малой частоте (0,1...1 Гц) и той же глубине достигается очень красочный и выразительный эффект, подобный «плавающему» звучанию гавайской гитары.

Сигнал с выхода тонального генератора надо подавать на вход цифрового формирователя сигналов равномерно-темперированного музыкального строя.

На операционном усилителе DA1 собран активный сумматор управляющих сигналов. Сигнал с выхода сумматора поступает на вход ГУН, который выполнен на логических элементах DD1.1-DD1.4. Кроме ГУН, устройство содержит образцовый кварцованный генератор, собранный на элементах DD2.1, DD2.2, а также цепь из двух октавных делителей частоты на триггерах микросхемы DD3. тактируемых этим генератором. Генератор и триггеры формируют три образцовых сигнала с частотой 500 кГц, 1 и 2 МГц. Эти три сигнала и сигнал с выхода ГУН поступают на вход электронных ключей, собранных на элементах DD4.1-DD4.4 с открытым коллектором.

Эти коммутаторы, управляемые переключателями SA2-SA5, имеют общую нагрузку - резистор R13. Выходные цепи элементов образуют устройство с логической функцией ИЛИ. Когда один из ключей пропускает на выход свой тактовый сигнал, остальные закрыты низким уровнем с переключателей. Высокий уровень для подачи на R-входы D-триггеров DD3.1 и DD3.2 и на контакты переключателей SA2-SA5 снимают с выхода элемента DD2.4.

Кварцованный генератор с делителями частоты играют вспомогательную роль и служат в основном для оперативной подстройки ГУН или «ведут» инструмент в режиме «Орган», при этом переключатели SA3, SA4, SA5 («4"», «8"», «16"») позволяют смещать строй ЭМИ соответственно от самого низкого регистра на одну и на две октавы вверх. При этом, разумеется, никакой подстройки или изменения высоты звуков быть не может.

К недостаткам генератора следует отнести сравнительно низкую температурную стабильность, которая в данном случае не имеет большого значения , и значительную нелинейность управляющей характеристики ГУН на краях диапазона, особенно в области нижних частот рабочего диапазона генератора.

На рис. 4 показана экспериментально снятая зависимость частоты генерации от управляющего напряжения: 1 - для генератора по схеме рис. 1, 2 - рис. 3.

Устройство собрано на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм.

Микросхемы серии К155 можно заменить на аналогичные из серий K130 и К133; К553УД1А - на К553УД1В, К553УД2, К153УД1А, К153УД1В, К153УД2. Вместо Д9Б можно использовать диоды этой серии с любым буквенным индексом, а также Д2В, Д18, Д311, ГД511А. Конденсаторы С4 и С5 лучше выбрать с положительным ТКЕ, например. КТ-П210. КПМ-П120, КПМ-П33, КС- П33, КМ- П33, К10-17-П33, К21У-2-П210, К21У-3-П33. Конденсаторы С7, C10, C11 - К50-6.

Особое внимание следует уделить тщательной экранировке устройства. Выходные проводники нужно свить в шнур с шагом 10..30 мм.

Правильно смонтированный тональный генератор в налаживании не нуждается и начинает работать сразу после подключения питания. Управляющее напряжение на входе ГУН не должно превышать 8...8,2 В. На стабильность частоты генератора отрицательно влияют изменения питающего напряжения 5 В, поэтому питать его необходимо от источника с высоким коэффициентом стабилизации.

И. БАСКОВ, д. Полоска Калининской обл.

ЛИТЕРАТУРА

  1. В. Беспалов. Делитель частоты для многоголосного ЭМИ. - Радио, 1980, № 9.
  2. Л. А. Кузнецов. Основы теории, конструирования, производства и ремонта ЭМИ. - М.: Лёгкая и пищевая промышленность. 1981.

Генераторы низкой частоты (ГНЧ) используют для получения незатухающих периодических колебаний электрического тока в диапазоне частот от долей Гц до десятков кГц. Такие генераторы, как правило, представляют собой усилители, охваченные положительной обратной связью (рис. 11.7,11.8) через фазосдви-гающие цепочки. Для осуществления этой связи и для возбуждения генератора необходимы следующие условия: сигнал с выхода усилителя должен поступать на вход со сдвигом по фазе 360 градусов (или кратном ему, т.е. О, 720, 1080 и т.д. градусов), а сам усилитель должен иметь некоторый запас коэффициента усиления, KycMIN. Поскольку условие оптимального сдвига фаз для возникновения генерации может выполняться только на одной частоте, именно на этой частоте и возбуждается усилитель с положительной обратной связью.

Для сдвига сигнала по фазе используют RC- и LC-цепи, кроме того, сам усилитель вносит в сигнал фазовый сдвиг. Для получения положительной обратной связи в генераторах (рис. 11.1, 11.7, 11.9) использован двойной Т-образный RC-мост; в генераторах (рис. 11.2, 11.8, 11.10) — мост Вина; в генераторах (рис. 11.3 — 11.6, 11.11 — 11.15) — фазосдвигающие RC-це-почки. В генераторах с RC-цепочками число звеньев может быть достаточно большим. На практике же для упрощения схемы число не превышает двух, трех.

Расчетные формулы и соотношения для определения основных характеристик RC-генераторов сигналов синусоидальной формы приведены в таблице 11.1. Для простоты расчета и упрощения подбора деталей использованы элементы с одинаковыми номиналами. Для вычисления частоты генерации (в Гц) в формулы подставляют значения сопротивлений, выраженные в Омах, емкостей — в Фарадах. Для примера, определим частоту генерации RC-генератора с использованием трехзвенной RC-це-пи положительной обратной связи (рис. 11.5). При R=8,2 кОм; С=5100 пФ (5,1х1СГ9 Ф) рабочая частота генератора будет равна 9326 Гц.

Таблица 11.1

Для того чтобы соотношение резистивно-емкостных элементов генераторов соответствовало расчетным значениям, крайне желательно, чтобы входные и выходные цепи усилителя, охваченного петлей положительной обратной связи, не шунтировали эти элементы, не влияли на их величину. В этой связи для построения генераторных схем целесообразно использовать каскады усиления, имеющие высокое входное и низкое выходное сопротивления.

На рис. 11.7, 11.9 приведены «теоретическая» и несложная практическая схемы генераторов с использованием двойного Т-моста в цепи положительной обратной связи.

Генераторы с мостом Вина показаны на рис. 11.8, 11.10 [Р 1/88-34]. В качестве УНЧ использован двухкаскадный усилитель. Амплитуду выходного сигнала можно регулировать потенциометром R6. Если требуется создать генератор с мостом Вина, перестраиваемый по частоте, последовательно с резисторами R1, R2 (рис. 11.2, 11.8) включают сдвоенный потенциометр. Частотой такого генератора можно также управлять, заменив конденсаторы С1 и С2 (рис. 11.2, 11.8) на сдвоенный конденсатор переменной емкости. Поскольку максимальная емкость такого конденсатора редко превышает 500 пФ, удается перестраивать частоту генерации только в области достаточно высоких частот (десятки, сотни кГц). Стабильность частоты генерации в этом диапазоне невысока.

На практике для изменения частоты генерации подобных устройств часто используют переключаемые наборы конденсаторов или резисторов, а во входных цепях применяют полевые транзисторы. Во всех приводимых схемах отсутствуют элементы стабилизации выходного напряжения (для упрощения), хотя для генераторов, работающих на одной частоте или в узком диапазоне ее перестройки, их использование не обязательно.

Схемы генераторов синусоидальных сигналов с использованием трехзвенных фазосдвигающих RC-цепочек (рис. 11.3)

показаны на рис. 11.11, 11.12. Генератор (рис. 11.11) работает на частоте 400 Гц [Р 4/80-43]. Каждый из элементов трехзвен-ной фазосдвигающей RC-цепочки вносит фазовый сдвиг на 60 градусов, при четырехзвенной — 45 градусов. Однокаскадный усилитель (рис. 11.12), выполненный по схеме с общим эмиттером, вносит необходимый для возникновения генерации фазовый сдвиг на 180 градусов. Заметим, что генератор по схеме на рис. 11.12 работоспособен при использовании транзистора с высоким коэффициентом передачи по току (обычно свыше 45...60). При значительном снижении напряжения питания и неоптимальном выборе элементов для задания режима транзистора по постоянному току генерация сорвется.

Звуковые генераторы (рис. 11.13 — 11.15) близки по построению к генераторам с фазосдвигающими RC-цепочками [Рл 10/96-27]. Однако за счет использования индуктивности (телефонный капсюль ТК-67 или ТМ-2В) вместо одного из ре-зистивных элементов фазосдвигающей цепочки, они работают с меньшим числом элементов и в большем диапазоне изменения напряжения питания.

Так, звуковой генератор (рис. 11.13) работоспособен при изменении напряжения питания в пределах 1...15 В (потребляемый ток 2...60 мА). При этом частота генерации изменяется от 1 кГц (ипит=1,5 В) до 1,3 кГц при 15 В.

Звуковой индикатор с внешним управлением (рис. 11.14) также работает при 1)пит=1...15 В; включение/выключение генератора производится подачей на его вход логических уровней единицы/нуля, которые также должны быть в пределах 1...15 В.

Звуковой генератор может быть выполнен и по другой схеме (рис. 11.15). Частота его генерации меняется от 740 Гц (ток потребления 1,2 мА, напряжение питания 1,5 В) до 3,3 кГц (6,2 мА и 15 В). Более стабильна частота генерации при изменении напряжения питания в пределах 3...11 В — она составляет 1,7 кГц± 1%. Фактически этот генератор выполнен уже не на RC-, а на LC-эле-ментах, причем, в качестве индуктивности используется обмотка телефонного капсюля.

Низкочастотный генератор синусоидальных колебаний (рис. 11.16) собран по характерной для LC-генераторов схеме «емкостной трехточки». Отличие заключается в том, что в качестве индуктивности использована катушка телефонного капсюля, а резонансная частота находится в диапазоне звуковых колебаний за счет подбора емкостных элементов схемы.

Другой низкочастотный LC-генератор, выполненный по каскодной схеме, показан на рис. 11.17 [Р 1/88-51]. В качестве индуктивности можно воспользоваться универсальной или стирающей головками от магнитофонов, обмотками дросселей или трансформаторов.

RC-генератор (рис. 11.18) реализован на полевых транзисторах [Рл 10/96-27]. Подобная схема используется обычно при построении высокостабильных LC-генераторов. Генерация возникает уже при напряжении питания, превышающем 1 В. При изменении напряжения с 2 до 10 6 частота генерации понижается с 1,1 кГц до 660 Гц, а потребляемый ток увеличивается, соответственно, с 4 до 11 мА. Импульсы частотой от единиц Гц до 70 кГц и выше могут быть получены изменением емкости конденсатора С1 (от 150 пФ до 10 мкФ) и сопротивления резистора R2.

Представленные выше звуковые генераторы могут быть использованы в качестве экономичных индикаторов состояния (включено/выключено) узлов и блоков радиоэлектронной аппаратуры, в частности, светоизлучающих диодов, для замены или дублирования световой индикации, для аварийной и тревожной индикации и т.д.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год



Похожие статьи
  • Сколько калорий в пирожке с капустой

    Все мы любим пирожки. У многих пирожки – это воспоминания о детстве, о субботнем утре, о деревне; бабушкины пирожки для многих всегда останутся самыми вкусными и ароматными. И нередко на диете бывает легче перенести отсутствие десерта, чем запрет...

    Насосные станции
  • Афанасий фет В каком веке родился фет

    Родился в семье помещика Афанасия Неофитовича Шеншина и матери, которая ушла к нему от мужа Иоганна-Петера Фета. После четырнадцати лет орловской духовной консисторией Афанасию была возвращена фамилия предыдущего мужа матери, из-за чего он терял...

    Нормы и правила
  • Сонник: к чему снится Ругаться

    Ругаться по соннику эзотерика Е.Цветкова Ругаться – Браниться с кем-то – досада; слышать ругань – официальная церемония; с женой, мужем – см. Жена, муж.Ругаться – Досада. Сонник Странника (Терентия Смирнова) Толкование Ругались из вашего сна...

    Проектирование