Прохождение света звезд через солнечную корону. Российские учёные «разгладили» свет, чтобы найти близнецов Земли. Магнитный ковер Солнечной короны

01.09.2020

Солнце — это огромная сфера раскаленных газов, которые вырабатывают колоссальную энергию и свет и делают жизнь на Земле возможной.

Этот небесный объект является самым крупным и массивным в Солнечной системе. От Земли до него расстояние составляет от 150 миллионов километров. Чтобы добраться до нас теплу и солнечному свету требуется около восьми минут. Это расстояние также именуют восемь световых минут.

Звезда, согревающая нашу землю, состоит из нескольких внешних слоев, таких как фотосфера, хромосфера и солнечная корона. Внешние слои атмосферы Солнца создают энергию на поверхности, которая пузырится и вырывается из внутренностей звезды, и определяется как солнечный свет.

Составляющие внешенего слоя Солнца

Слой, который мы видим, называется фотосферой или сферой света. Фотосфера отмечена яркими, кипящими гранулами плазмы и более темными, холодными которые возникают, когда солнечные магнитные поля прорываются через поверхность. Пятна появляются и перемещаются по диску Солнца. Наблюдая это движение, астрономы заключили, что наше светило оборачивается вокруг своей оси. Так как Солнце не имеет твердой основы, различные области вращаются с разной скоростью. Области экватора проходят полный круг примерно за 24 дня, в то время как вращение полярных может занять более 30 дней (чтобы сделать оборот).

Что такое фотосфера?

Фотосфера также является источником языки пламени, которые простираются сотни тысяч миль над поверхностью Солнца. Солнечные вспышки производят всплески рентгеновского, ультрафиолетового, электромагнитного излучения и радиоволн. Источником рентгеновского и радиоизлучения является непосредственно солнечная корона.

Что такое хромосфера?

Зону, окружающую фотосферу, которая является внешней оболочкой Солнца, называют хромосферой. Узкая область отделяет корону от хромосферы. Температура поднимается резко в переходной области, от нескольких тысяч градусов в хромосфере до более чем миллиона градусов в короне. Хромосфера излучает красноватое свечение, как от сгорания перегретого водорода. Но красный обод можно увидеть только во время затмения. В другое время свет от хромосферы, как правило, слишком слабый, чтобы увидеть его на фоне яркой фотосферы. Плотность плазмы падает быстро, через область перехода движется вверх от хромосферы к короне.

Что такое солнечная корона? Описание

Астрономы неустанно проводят исследования загадки, которую таит в себе солнечная корона. Что она из себя представляет?

Это атмосфера Солнца или его внешний слой. Такое название дали потому, что его внешний вид становится очевидным, когда происходит полное солнечное затмение. Частицы от короны простираются далеко в космос и, по сути, достигают орбиты Земли. Форма в основном определяется магнитным полем. Свободные электроны в коронном движении вдоль образуют множество различных структур. Формы, которые наблюдаются в короне над солнечными пятнами, часто имеют подковообразные очертания, что еще раз подтверждает, что они следуют по линиям магнитного поля. С вершины таких «арок» длинные растяжки могут распространяться, на расстоянии диаметра Солнца или даже больше, как будто какой-то процесс вытягивает материал от верхушки арок в пространство. В этом задействован солнечный ветер, который попадает наружу через нашу солнечную систему. Астрономы назвали такие явления «шлем серпантин» из-за их сходства с зубчатыми шлемами, которые носили рыцари и использовали некоторые немецкие солдаты до 1918 г.

Из чего состоит корона?

Материал, из которого образуется солнечная корона, является чрезвычайно горячим, состоящим из разреженной плазмы. Температура внутри короны более миллиона градусов, на удивление, гораздо выше, чем температура на поверхности Солнца, которая составляет около 5500 °C. Давление и плотность короны, намного ниже, чем в атмосфере Земли.

Наблюдая видимый спектр солнечной короны, были обнаружены яркие эмиссионные линии на длинах волн, которые не соответствуют известным материалам. В связи с этим, астрономы предположили существование «корония» в качестве основного газа в короне. Истинная природа этого явления оставалась тайной, пока не обнаружили, что корональные газы перегреты выше 1.000.000 °C. При наличии такой высокой температуры два доминирующих элемента - водород и гелий - абсолютно лишены своих электронов. Даже незначительные вещества, такие как углерод, азот и кислород разделись до голых ядер. Только более тяжелые составляющие (железо и кальций) способны сохранить некоторые из своих электронов под воздействием таких температур. Излучение из этих высокоионизованных элементов, которые образуют спектральные линии, до недавних времен оставались загадочными для ранних астрономов.

Яркость и интересные факты

Солнечная поверхность слишком яркая и, как правило, нашему зрению недоступна ее солнечная атмосфера, корона Солнца тоже не видна невооруженным глазом. Внешний слой атмосферы очень тонкий и слабый, поэтому его можно увидеть только с Земли в то время когда происходит солнечное затмение или при помощи специального телескопа-коронографа, который имитирует затмение, покрывая яркий солнечный диск. Некоторые коронографы используют наземные телескопы, другие проводятся на спутниках.

Происходит из-за его огромной температуры. С другой стороны, солнечная фотосфера излучает очень мало рентгеновских лучей. Это позволяет просматривать корону по диску Солнца, когда мы наблюдаем его в рентгеновских лучах. Для этого используется специальная оптика, которая позволяет видеть рентгеновские лучи. В начале 70-х годов первая космическая станция США Скайлэб использовала рентгеновский телескоп, при помощи которого были отчетливо видны солнечная корона и солнечные пятна или дыры впервые. В течение последнего десятилетия было предоставлено огромное количество информации и изображений на короне Солнца. При помощи спутников солнечная корона становится более доступной для проведения новых и интересных наблюдений Солнца, его особенностей и динамичного характера.

Температура Солнца

Хотя внутренняя структура солнечного ядра скрыта от прямых наблюдений, можно сделать вывод, с использованием различных моделей, что максимальная температура внутри нашей звезды составляет около 16 миллионов градусов (по Цельсию). Фотосфера — видимая поверхность Солнца - имеет температуру около 6000 градусов по Цельсию, однако она увеличивается очень резко от 6000 градусов до нескольких миллионов градусов в короне, в районе 500 километров над фотосферой.

Солнце горячее на внутренней стороне, чем на внешней стороне. Тем не менее, наружная атмосфера Солнца, короны, действительно горячее, чем фотосферы.

В конце тридцатых годов Гротриан (1939) и Эдлен обнаружили, что странные спектральные линии, наблюдаемые в спектре солнечной короны, излучаются элементами, такими как железо (Fe), кальций (Са) и никель (Ni) в очень высоких стадиях ионизации. Они пришли к выводу, что корональный газ сильно нагревается с температурой более 1 миллиона градусов.

Вопрос о том, почему солнечная корона настолько горяча, остается одной из самых захватывающих головоломок астрономии за последние 60 лет. Однозначного ответа на этот вопрос пока нет.

Хотя солнечная корона несоизмеримо горяча, она также имеет очень низкую плотность. Таким образом, лишь небольшая часть от общего солнечного излучения требуется для подпитки короны. Суммарная мощность, излучаемая в рентгеновских лучах, составляет лишь около одной миллионной полной светимости Солнца. Важный вопрос заключается в том, как транспортируется энергия до короны и какой механизм отвечает за транспорт.

Механизмы питания солнечной короны

На протяжении многих лет было предложено несколько различных механизмов питания короны:

    Акустические волны.

    Быстрые и медленные магнито-акустические волны тел.

    Альфвеновские тела волны.

    Медленная и быстрая магнито-акустические поверхностные волны.

    Ток (или магнитное поле) - рассеивание.

    Потоки частиц и магнитного потока.

Эти механизмы были проверены как теоретически, так и экспериментально и на сегодняшний день только акустические волны были исключены.

Пока что еще не изучено, где заканчивается верхняя граница короны. Земля и другие планеты Солнечной системы располагаются внутри короны. Оптическое излучение короны наблюдается на 10—20 радиусов Солнца (десятки миллионов километров) и объединяется с явлением зодиакального света.

Магнитный ковер Солнечной короны

В последнее время «магнитный ковер» был связан с головоломкой коронального отопления.

Наблюдения с высоким пространственным разрешением показывают, что поверхность Солнца покрыта слабыми магнитными полями, сосредоточенными на небольших участках противоположной полярности (магнит ковра). Эти магнитные концентрации, как полагают, являются основными точками отдельных магнитных трубок, несущих электрический ток.

Недавние наблюдения этого «магнитного ковра» показывают интересную динамику: фотосферные магнитные поля постоянно перемещаются, взаимодействуют друг с другом, рассеиваются и выходят на очень короткий период времени. Магнитное пересоединение между противоположной полярности может изменить топологию поля и выпустить магнитную энергию. Процесс переподключения также приведет к рассеиванию электрических токов, которые преобразуют электрическую энергию в тепло.

Это общее представление о том, как магнитный ковер может быть вовлечен в корональный нагрев. Однако утверждать, что «магнитный ковер» в конечном счете решает проблему нагрева короны нельзя, так как количественная модель процесса еще не предложена.

Может ли Солнце погаснуть?

Солнечная система настолько сложна и неизведанна, что сенсационные заявления, такие как: «Солнце скоро погаснет» или, наоборот, «Температура Солнца повышается и скоро жизнь на Земле станет невозможной» звучат по меньшей мере нелепо. Кто может делать такие прогнозы, в точности не зная, какие механизмы заложены в основу этой таинственной звезды?!

Создана новая технология наблюдения за экзопланетами

Оптическую технологию «исправления» света от далеких звёзд разработали физики из МФТИ и ИКИ РАН. Она позволит значительно улучшить «зрение» телескопов и напрямую наблюдать экзопланеты, сопоставимые по размерам с Землей. Работа была опубликована в Journal of Astronomical Telescopes, Instruments, and Systems. «МК» побеседовал о разработке с руководителем научной группы доцентом МФТИ и заведующим Лабораторией планетной астрономии ИКИ РАН Александром ТАВРОВЫМ.

Первые экзопланеты - планеты за пределами Солнечной системы - были обнаружены в конце XX века, а сейчас их известно более двух тысяч. Увидеть их собственный свет без специальных инструментов практически невозможно - его “затмевает” излучение звёзд. Поэтому экзопланеты до последнего времени находили только косвенными методами: фиксируя слабые периодические колебания светимости звезды при прохождении планеты перед её диском (транзитный метод), или же колебания самой звезды под действием притяжения планеты (метод лучевых скоростей). Только в конце 2000-х годов астрономы впервые смогли напрямую получить снимки экзопланет. Для таких съемок используются коронографы, впервые созданные в 1930-х годах для наблюдений солнечной короны вне затмений. Внутри у этих устройств есть “искусственная луна”, которая экранирует часть поля зрения, например, закрывает солнечный диск, позволяя видеть тусклую солнечную корону.

Для того, чтобы повторить метод с далекими объектами - звездами и экзопланетами, вращающимися вокруг своих светил за пределами Солнечной системы, требуется значительно более высокий уровень точности и значительно более высокое разрешение самого телескопа, на котором установлен коронограф.

Если мы наблюдаем за небесным объектом с Земли при помощи телескопа, то без специальной адаптивной оптики, вряд ли добьемся хорошего результата. Свет проходит через турбулентную атмосферу, что мешает в итоге увидеть объект в хорошем качестве, - поясняет Александр Тавров. - Для наблюдения экзопланет используются космические телескопы. Им земная атмосфера уже не мешает, но есть множество других факторов, которые также требуют наличия в телескопе адаптивной оптики (как правило, это какая-то специальная мембрана – управляемое изогнутое зеркало, позволяющее «выравнивать» свет от далеких объектов). У западных коллег такая точная, дорогая оптика существует, а у нас, увы, пока нет. Наше ноу-хау заключается в инновационном решении, позволяющем обойтись без суперточных адаптивных зеркал при наблюдении за экзопланетами. На пути света к коронографу мы поставили другое оптическое устройство - несбалансированный интерферометр. Если говорить по-простому, он исправляет изображение, полученное от звезды и вращающейся вокруг нее экзопланеты, после чего на коронографе мы можем хорошо отличить свечение отдельно взятой планеты от света звезды. Качество полученного таким способом изображения получается не хуже, чем у западных коллег, а в чем-то даже лучше.

3 532

С древних тысячелетий люди считали, что Земля, как и другие планеты, является живым организмом с костной структурой и другими органами жизнедеятельности. При этом температура внутри планет и звёзд находится в пределах 300-350°C.
Астроном Вильям Гершель в 1795 году писал о том, что звёзды – это большие планеты, но с ярким свечением.

Согласно преданиям Востока около 40 тысяч лет назад планета Солнце стало звездой вместо Юпитера, который, утратив яркость свечения, стал планетой.

Сейчас известно, что Солнце имеет форму шара с твёрдой поверхностью, многослойной атмосферой (аурой), радиационным и геомагнитным поясами. Яркое свечение вокруг Солнца образуется в верхних слоях его атмосферы – короне. Поверхность самого Солнца защищена от температуры короны многослойностью его атмосферы, толщина которой равна более 40 тыс. километров.

Нашими исследованиями последних лет удалось приблизиться к разгадке процесса образования высокотемпературного свечения в короне Солнца, чего нет у других планет, в том числе и у Юпитера (считавшегося ранее звездой). Одну из первых попыток объяснить повышенную энергетику Солнца сделал в 1842 году астроном Майер, который предположил, что звезда пополняется падающими на него необычными метеоритами. Подтверждением этому может являться падение на Солнце в феврале 1994 г. гигантской глыбы материального тела, которое внедрилось в поверхность звезды без какого-либо выброса грунта. Из газет известно, что в конце июля того же года на Юпитер упало громадное тело, тоже без выброса грунта. Через несколько месяцев в газетах появилось сообщение о появлении у поверхности Сатурна огромного тела, которое перед падением разделилось на несколько частей и поочередно внедрялось в поверхность Сатурна в течение 4-х дней; как бы выбирая место падения.

По легендам Востока известно, что корабли Больших Строителей Космической Цивилизации бороздят Космос, доставляя (транспортируя) различные материалы для создания и функционирования необходимых объектов на звёздах и планетах.

Упавшее на Солнце в 1994 году материальное тело было внедрено в поверхность коры у западной гряды известных белых и чёрных пятен.

Установлено давно, что белые пятна обладают положительным, а чёрные пятна — отрицательным магнитным полем.

Эта гряда заглублена в поверхность звезды и простирается с запада на восток более чем на 40 тысяч км. Она является южным энергоисточником, участвующим в образовании яркого коронного свечения звезды. Другой заглублённый энергоисточник находится в северной части Солнца на месте видимых спланированных геометрических форм неприродного происхождения. Между южным и северным энергоисточниками имеются тоннельные коммуникации. В районе экватора от этих тоннелей вверх (в атмосферу) уходит мощный поток энергии, возбуждающий свечение в слоях короны (см. рис.).

Можно предположить, что подобный энергопоток с энергоцентрами был также и на Юпитере. Не исключено, что подобные сооружения имеются также и на других звёздах Вселенной.

Яркое коронное свечение вокруг Солнца происходит на высоте внутреннего радиационного пояса, разделённого дискообразным энергослоем (ДЭС) на северную и южную части. Именно по этому ДЭС идут основные жизненные энергопотоки между Солнцем и Космосом в обоих направлениях.

Оказывается, что ранее древние цивилизации могли создавать яркое внешнее свечение в малых и больших шаровых светильниках. Такие светильники имелись до новой эры в храмах Египта, Римской империи, Ближнего Востока.

Исследователь полковник П.Х. Фосетт в начале XX века писал, что в Бразилии, в недоступных лесах бассейна р. Амазонка находились шаровые светильники, освещавшие весь город. Эти светильники обладали внешним ореолом свечения, в то время как сами слоистые шары могли быть непрозрачными. Ранее на Земле подобные светильники имели разные конструктивные решения больших и малых размеров.

Любопытно, что подобная «вечная лампа» была продемонстрирована в 1845 году в зале в Вольного экономического общества Петербурга изобретателем Ф.И. Борщевским. В заявке своего изобретения автор сообщал, что в стеклянном шаре находятся два острых кусочка плавикового шпата (флюорита) из гранитных гор Сибири. Эти кусочки плавикового шпата ярко светятся от гальванической батареи, не плавятся и работают вечно, потребляя небольшой ток. Об этом сообщается в книге Д.Тихого «Эстафета великого открытия» (Советская Россия, М., 1971). В устройствах экваториальной части энергоканала на Солнце наверняка тоже имеются материалы флюорита.

Как наблюдение солнечных затмений помогает нам открывать новые планеты

Те, кто видел полное затмение Солнца, никогда его не забудет, хотя и длиться это событие не больше 2 – 3 минут. Во время затмения Солнца температура на Земле может упасть на 15 градусов. Хотя это пустяки по сравнению с температурой в космосе. Насколько холодно во Вселенной? Нам под лучами Солнца на Земле тепло. Но в космосе температура всего на 1,5 градуса выше абсолютного нуля. А абсолютный ноль – это минус 273°С. Очень холодно.

Древние люди не понимали физической природы затмения. Они просто видели, что Солнце меркнет, как будто боги или драконы пожирали его. Тогда они пугались и старались умилостивить богов. В течение тысяч лет древние астрономы наблюдали за движениями планет, Луны и Солнца на небосводе. Со временем они поняли, что когда Луна проходит прямо перед Солнцем, то именно из-за этого происходит затмение. Позже ученые научились их предсказывать. Уже вавилоняне открыли так называемый цикл затмений более 20 веков тому назад. Он проходит каждые 223 месяца, то есть замыкается примерно раз в 18 лет.

Грекам было известно об открытии вавилонян. Мы узнали об этом благодаря древнему устройству, найденному на затонувшем судне в Средиземном море 1901 году. Это замечательный механизм, который вначале приняли за причудливые часы. Потом стало понятно, что это своеобразный греческий астрономический таймер – очень сложный прибор с многочисленными внутренними механизмами. По сути это механический компьютер для расчета фаз луны и прочих астрономических феноменов.

В 2008 году при помощи 3-мерных рентгеновских лучей и сканирования было установлено, что вавилонский цикл встроен в устройство. На обратной стороне диска были выгравированы спиралевидные фигуры с делениями, которые соответствовали положению Луны в вавилонском цикле. А зачем, как не для определения даты затмений нужно было это устройство?

Полное солнечное затмение , которое можно увидеть с Земли, происходит в среднем каждые 16 месяцев . Сегодня их предсказание – это очень точная наука. Но мы сегодня умеем не только предсказывать дату затмений до секунды, но и место, где его можно будет увидеть по всей Земле.

Солнечное затмение – удивительное явление. И если понимать, почему именно оно происходит, то оно становится еще удивительнее. Луна находится на расстоянии 400 тыс. км от Земли. Она имеет точно такой диаметр, что закрывая Солнце, она закрывает его полностью. Если бы она была чуть меньше, то она не смогла бы полностью закрывать Солнце, оставалась бы солнечная кайма по краям. Но удивительное кроется в том, что Луна именно такого размера, чтобы закрыть Солнце, ни больше, ни меньше.

При солнечном затмении на Земле есть области полного затмения, откуда видно, что Луна полностью закрывает Солнце. А есть области полутени, где наблюдают только неполное затмение. Поскольку Луна движется по орбите, то ее тень движется по Земле и таким образом люди в разных точках Земли, где проходит лунная тень, могут наблюдать затмение. Лунная тень как бы очерчивает некую широкую линию по поверхности Земли. Она имеет ширину около 150 км. Так что если хотите увидеть полное солнечное затмение, нужно точно выбрать место, где будет проходить полоса полного затмения .

Феномен затмения касается не только Солнца или Луны. Это случается повсюду во Вселенной. Практически на всех планетах, где есть спутники, происходят солнечные затмения. Как в нашей Солнечной системе, так и в других системах космоса. В нашей Солнечной системе затмения не происходят только на Меркурии и Венере, потому что у них нет спутников. На данный момент нам известно 170 спутников в нашей системе, вращающихся по орбитам вокруг планет, при этом у Сатурна и Юпитера имеется минимум 60 спутников у каждого. Правда, в большинстве случаев эти спутники слишком малы, чтобы вызвать полное солнечное затмение, поэтому, можно сказть, что с Луной нам сильно повезло.

Другой вид затмений дал возможность определить, что Земля не плоская, а круглая. Это происходит во время Лунного затмения . Это явление мы наблюдаем постоянно на небе. Луна ведь круглая, но на небе можно видеть лунный рожок – Земля закрывает собой солнечный свет, падающий на Луну. Таким образом, мы видим Луну и тень на ней от нашей же планеты Земли. А тень-то изогнута! Значит, Земля имеет вид сферы. Когда Земля полностью закрывает Луну – это полное лунное затмение. В период полного лунного затмения Луна выглядит красно-оранжевой. Хотя она закрыта Землей, свет от Солнца проходит через атмосферу Земли. Свет, проходя большое расстояние через нашу атмосферу, становится красным. Точно также, как свет при закате Солнца.

В 1915 году Эйнштейн опубликовал свое предположение, что гравитация заставляет пространство изгибаться, и свет следует по этой кривой. Значит, если звезда окажется близко от Солнца в небе, свет будет изогнут гравитацией Солнца. Проверить теорию Эйнштейна можно было только во время солнечного затмения, когда Солнце затемнено, а ближайшие звезды видны. Это решил проверить Эдингтон. Он знал точное местоположение звезды, которая будет закрыта Солнцем и если гравитация Солнца изогнет свет звезды, то окажется, будто она в другом месте. Эдингтон все точно измерил и увидел, что теория Эйнштейна подтвердилась.

Есть еще одна польза от затмения Солнца – в этот момент мы отчетливо видим корону Солнца, то есть внешние слои его атмосферы. Их Луна уже не закрывает. На незатемненном Солнце корону различить просто невозможно, она засвечена солнечным светом, который в миллионы раз ярче своей короны. Без солнечного затмения мы бы так и не узнали, что на Солнце есть такая раскаленная атмосфера, которая простирается до нас с Вами и далее, до краев Солнечной системы. Фактически, мы с Вами погружены в солнечную атмосферу, то есть в солнечную корону, которая имеет высокую температуру только возле Солнца.

Оказывается, можно делать искусственное солнечное затмение – закрыть диск Солнца подходящим по размеру кружочком. Получится прототип коронографа , который используется для изучения короны солнца и окружающих звезд. Коронографы были изобретены в 1939 году и сначала устанавливались на телескопы. Лучше всего они работали на высоте, где рассеивание солнечного света в атмосфере было минимальным, а также за пределами атмосферы Земли, что достигается, естественно, только установкой их на исследовательские космические аппараты, такие как SOHO и STEREO.

Зачем так много и часто фотографировать корону Солнца? Мы видим все изменения в структуре короны: протуберанцы, вспышки и прочее. Также можно видеть так называемые царапающие Солнце кометы – они подлетают к Солнцу, едва не врезаясь в него. При обычных условиях они были бы не видны, но при затмении диска Солнца они становятся ясно видны.

В 1971 году спутник НАСА с коронографом сделал удивительные снимки короны Солнца. Там виден взрыв на короне, который раньше никто никогда не видел. Было открыто, что на Солнце иногда происходят выбросы так называемой коронарной массы , порождая в солнечной атмосфере взрывы невиданной мощности. При этом происходит выброс заряженных солнечных частиц, и именно они, достигнув Земли, создают полярные сияния .

Еще более интересные затмения можно наблюдать из космоса, когда Земля закрывает Солнце, или, как сделал это спутник “STEREO”, показав нам нашу Луну издалека, в тот момент, когда она проходила по солнечному диску. Зачем делать такие снимки, если мы итак прекрасно знаем о существовании Луны?

А затем, что после, на основе собранных данных, мы научились открывать новые планеты или экзопланеты (планеты, вращающиеся вокруг других звезд). Обычно их не видно даже в самые мощные телескопы, но зато они отлично видны, когда проходят на фоне какой-нибудь звезды. Хотя размер “экзопланет” не сопоставим с размерами их “солнц”, мы, используя имеющийся у нас опыт, можем разглядеть слабое изменение светимости тех самых звезд, в момент прохода экзопланеты по их дискам, то есть, фактически, наблюдая (хоть и в меньших масштабах) те самые “солнечные затмения”.

Солнце является единственной звездой в Солнечной системе, вокруг нее совершают свое движение все планеты системы, а также их спутники и другие объекты, вплоть до космической пыли. Если сравнить массу Солнца с массой всей Солнечной системы, то она составит порядка 99,866 процентов.

Солнце является одной из 100 000 000 000 звезд нашей Галактики и по величине стоит среди них на четвертом месте. Ближайшая к Солнцу звезда Проксима Центавра располагается на расстоянии четырех световых лет от Земли. От Солнца до планеты Земля 149,6 млн км, свет от звезды доходит за восемь минут. От центра Млечного пути звезда находится на расстоянии 26 тысяч световых лет, при этом она производит вращение вокруг него со скоростью 1 оборот в 200 миллионов лет.

Презентация: Солнце

По спектральной классификации звезда относится к типу «желтый карлик», по приблизительным расчетам ее возраст составляет чуть более 4,5 миллиардов лет, она находится в середине своего жизненного цикла.

Солнце, состоящее на 92% из водорода и на 7% из гелия, имеет очень сложное строение. В его центре находится ядро с радиусом примерно 150 000-175 000 км, что составляет до 25% от общего радиуса звезды, в его центре температура приближается к 14 000 000 К.

Ядро с большой скоростью производит вращение вокруг оси, причем эта скорость существенно превышает показатели внешних оболочек звезды. Здесь происходит реакция образования гелия из четырех протонов, вследствие чего получается большой объем энергии, проходящий через все слои и излучающийся с фотосферы в виде кинетической энергии и света. Над ядром находится зона лучистого переноса, где температуры находятся в диапазоне 2-7 миллионов К. Затем следует конвективная зона толщиной примерно 200 000 км, где наблюдается уже не переизлучение для переноса энергии, а перемешивание плазмы. На поверхности слоя температура составляет примерно 5800 К.

Атмосфера Солнца состоит из фотосферы, образующей видимую поверхность звезды, хромосферы толщиной порядка 2000 км и короны, последней внешней солнечной оболочки, температура которой находится в диапазоне 1 000 000-20 000 000 К. Из внешней части короны происходит выход ионизированных частиц, называемых солнечным ветром.

Когда Солнце достигнет возраста примерно в 7,5 - 8 миллиардов лет (то есть через 4-5 млрд лет) звезда превратится в «красного гиганта», ее внешние оболочки расширятся и достигнут орбиты Земли, возможно, отодвинув планету на более дальнее расстояние.

Под воздействием высоких температур жизнь в сегодняшнем понимании станет просто невозможна. Заключительный цикл своей жизни Солнце проведет в состоянии «белого карлика».

Солнце - источник жизни на Земле

Солнце самый главный источник тепла и энергии, благодаря которому при содействии других благоприятных факторов на Земле есть жизнь. Наша планета Земля вращается вокруг своей оси, поэтому каждые сутки, находясь на солнечной стороне планеты мы можем наблюдать рассвет и удивительное по красоте явление закат, а ночью, когда часть планеты попадает в теневую сторону, можно наблюдать за звездами на ночном небе.

Солнце оказывает огромное влияние на жизнедеятельность Земли, оно участвует в фотосинтезе, помогает в образовании витамина D в организме человека. Солнечный ветер вызывает геомагнитные бури и именно его проникновение в слои земной атмосферы вызывает такое красивейшее природное явление, как северное сияние, называемое еще полярным. Солнечная активность меняется в сторону уменьшения или усиления примерно раз в 11 лет.

С начала космической эры исследователей интересовало Солнце. Для профессионального наблюдения используются специальные телескопы с двумя зеркалами, разработаны международные программы, но самые точные данные можно получить вне слоев атмосферы Земли, поэтому чаще всего исследования проводятся со спутников, космических кораблей. Первые такие исследования были проведены еще в 1957 году в нескольких спектральных диапазонах.

Сегодня на орбиты выводятся спутники, представляющие собой обсерватории в миниатюре, позволяющие получить очень интересные материалы для изучения звезды. Еще в годы первого освоения космоса человеком были разработаны и запущены несколько космических аппаратов, направленных на изучение Солнца. Первыми из них была серия американских спутников, запуск которых стартовал в 1962 году. В 1976 году запущен западногерманский аппарат Гелиос-2, который впервые в истории приблизился к светилу на минимальное расстояние в 0,29 а.е. При этом были зафиксированы появление ядер легкого гелия при вспышках солнца, а также магнитные ударные волны, охватывающие диапазон 100 Гц-2,2 кГц.

Еще один интересный аппарат - солнечный зонд Ulysses, запущенный в 1990 году. Он выведен на околосолнечную орбиту и движется перпендикулярно полосе эклиптики. Через 8 лет после запуска аппарат завершил первый виток вокруг Солнца. Он зарегистрировал спиральную форму магнитного поля светила, а также постоянное его увеличение.

На 2018 год НАСА планирует запуск аппарата Solar Probe+, который приблизится к Солнцу на максимально приближенное расстояние - 6 млн. км (это в 7 раз меньше дистанции, достигнутой Гелиусом-2) и займет круговую орбиту. Для защиты от высочайшей температуры он оснащен щитом из углеродистого волокна.



Похожие статьи
  • Сколько калорий в пирожке с капустой

    Все мы любим пирожки. У многих пирожки – это воспоминания о детстве, о субботнем утре, о деревне; бабушкины пирожки для многих всегда останутся самыми вкусными и ароматными. И нередко на диете бывает легче перенести отсутствие десерта, чем запрет...

    Насосные станции
  • Афанасий фет В каком веке родился фет

    Родился в семье помещика Афанасия Неофитовича Шеншина и матери, которая ушла к нему от мужа Иоганна-Петера Фета. После четырнадцати лет орловской духовной консисторией Афанасию была возвращена фамилия предыдущего мужа матери, из-за чего он терял...

    Нормы и правила
  • Сонник: к чему снится Ругаться

    Ругаться по соннику эзотерика Е.Цветкова Ругаться – Браниться с кем-то – досада; слышать ругань – официальная церемония; с женой, мужем – см. Жена, муж.Ругаться – Досада. Сонник Странника (Терентия Смирнова) Толкование Ругались из вашего сна...

    Проектирование